Chapter 1

The real number line

1.1 Ordered Sets

One basic property of many number systems (natural numbers, integers, rationals, etc) is that they are ordered, so we say that " 3 is greater than 2 ", and so on.
1.1.1 Definition. A total order on a set S is a relation ${ }^{1} \leq$ satisfying the following axioms:
(O1) (Reflexivity) For every element a, it always holds that $a \leq a$.
(O2) (Antisymmetry) If $a \leq b$ and $b \leq a$, then it must be that $a=b$.
(O3) (Transitivity) If $a \leq b$ and $b \leq c$, then it holds that $a \leq c$.
(O4) (Totality) For every pair of elements a and b, either $a \leq b$ or $b \leq a$.
We say S is an ordered set.
1.1.2 Example. Find some examples of ordered sets.
1.1.3 Example. Find an example of a partially ordered set - a set with a relation satisfying axioms (O1)-(O3) but not (O4).
1.1.4 Problem. Suppose S is an ordered set. Formulate a reasonable definition of strict inequality $(a<b)$ in terms of the order relation \leq. Then write down a definition equivalent to Definition 1.1.1 using strict inequality as the primitive relation; that is, write down a set of axioms that < should satisfy, in terms of which \leq (suitably defined in terms of $<$) has properties (O1)-(O4).
1.1.5 Definition. Let S be an ordered set, and $A \subseteq S$ a subset. An upper bound for A is an element $u \in S$ such that $a \leq u$ for every $a \in A$. If such an element exists, we say A is bounded above.

Similarly, a lower bound for A is an element $l \in S$ such that $l \leq a$ for every $a \in A$. If such a lower bound exists, we say A is bounded below.
1.1.6 Definition. A least upper bound or supremum of a bounded above set A is an element u_{0} of S such that
(i) u_{0} is an upper bound for A, and
(ii) $u_{0} \leq u$ for every other upper bound u.

We denote a supremum for A (if it exists) by $\sup A$.
Similarly, a greatest lower bound or infimum of a bounded below set A is an element b_{0} of S such that
(i) b_{0} is a lower bound for A, and

[^0](ii) $b_{0} \geq b$ for every other lower bound b.

We denote an infimum for A (if it exists) by $\inf A$.
1.1.7 Proposition. If a supremum (or infimum) of A exists, then it is unique.
1.1.8 Proposition. If A and B are subsets of an ordered set S which are bounded above and below, and if $A \subseteq B$, then

$$
\inf B \leq \inf A \leq \sup A \leq \sup B
$$

1.1.9 Example. Let $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ denote the set of integers, with the usual order. Find some examples of subsets A of \mathbb{Z} such that
(a) A is bounded above and below.
(b) A is bounded above but not below.
(c) A is not bounded above and not bounded below.

Which of these sets have a supremum? Which have an infimum?
1.1.10 Example. Repeat Example 1.1 .9 with the set \mathbb{Q} of rational numbers in place of \mathbb{Z}. The following Lemma may be of use.
1.1.11 Lemma. There exists no $q \in \mathbb{Q}$ such that $q^{2}=2$. [Possible hint: write $q=\frac{a}{b}$ in lowest terms and consider the evenness/oddness of a and b.]
1.1.12 Definition. An ordered set S has the least upper bound property if every subset which is bounded above has a supremum. Likewise S has the greatest lower bound property if every subset which is bounded below has an infimum.
1.1.13 Example. Does \mathbb{Z} have the least upper bound property? Does \mathbb{Q} ? Justify your answers with a proof or counterexample.
1.1.14 Theorem. If S has the least upper bound property, then it has the greatest lower bound property.

[^0]: ${ }^{1}$ A relation is a comparision operation between two elements which evaluates to either true or false.

