1.2 Fields and ordered fields

Of course the familiar number systems have additional structure. Besides the order, we have addition, subtraction, multiplication and division.

1.2.1 Definition. A *field* is a set \mathbb{F} with two binary operations² + and \cdot , called *addition* and *multiplication*, respectively, satisfying the following axioms:

- (F1) (Associativity of addition) (a + b) + c = a + (b + c) for all a, b, c in \mathbb{F} .
- (F2) (Additive identity) There exists an element $0 \in \mathbb{F}$ such that 0 + a = a + 0 = a for all a.
- (F3) (Additive inverses) For each a in \mathbb{F} there exists an element -a such that (-a) + a = a + (-a) = 0.
- (F4) (Commutativity of addition) a + b = b + a for all a, b in \mathbb{F} .
- (F5) (Associativity of multiplication) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all a, b, c in \mathbb{F} .
- (F6) (Multiplicative identity) There exists an element $1 \in \mathbb{F}$ such that $1 \cdot a = a \cdot 1 = a$ for all a.
- (F7) (Multiplicative inverses) For all $a \neq 0$, there exists an element a^{-1} in \mathbb{F} such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$.
- (F8) (Commutativity of multiplication) $a \cdot b = b \cdot a$ for all a, b in \mathbb{F} .
- (F9) (Distributivity) $a \cdot (b+c) = a \cdot b + a \cdot c$.
- (F10) (Nontriviality) $0 \neq 1$.

It is customary to omit the \cdot when writing multiplication; in other words, we usually just write ab instead of $a \cdot b$. Additionally, we usually denote a + (-b) simply by a - b, and we may also use the notation $\frac{1}{a}$ in place of a^{-1} . It is important to note that subtraction – and division $\frac{1}{2}$ are not really distinct operations; they are just syntactic shorthand for addition (resp. multiplication) by an additive (resp. multiplicative) inverse.

We also use the usual shorthand a^n in place of $a \cdots a$ and na in place of $a + \cdots + a$.

$$n \text{ times}$$
 $n \text{ times}$

Remark. Though we shall be entirely concerned with fields in this course, you may be familiar with various mathematical objects satisfying fewer of the above axioms. A set with a single operation satisfying axioms (F1)–(F3) is a group which is said to be *commutative* or *abelian* if (F4) also holds.

A ring is a set with two operations satisfying all of the above except (F7), (F8) and (F10). A commutative ring satisfies (F8). According to some conventions, a ring need not satisfy (F6), though such "rings without identity" are sometimes cutely referred to as 'ring's. If (F7) holds but not (F8), then \mathbb{F} is called a *division ring*.

Axiom (F10) might be considered optional for fields, but if we allow 0 = 1 then \mathbb{F} must be the one element set $\{0\}$ (you can prove this after you prove Proposition 1.2.4 below), which for various reasons is best not regarded as a field.

1.2.2 Example. Come up with some examples of fields, some with infinitely many and some with finitely many elements. Can you construct a field with exactly two elements? Three?

1.2.3 Proposition. The following properties of addition and multiplication hold in any field. (That is, they follow from the axioms above.)

- (i) (Uniqueness of identities) If an element b in \mathbb{F} satisfies b + a = a for some a, then b = 0. Likewise if b satisfies ba = a for some $a \neq 0$, then b = 1.
- (ii) (Uniqueness of inverses) If b satisfies a + b = 0, then b = -a. Likewise, if b satisfies ba = 1 then $b = a^{-1}$.
- (iii) (Cancellation) If a + c = b + c then a = b. Likewise if $c \neq 0$ and ac = bc, then a = b.
- (iv) (Inverse of an inverse) -(-a) = a and $(a^{-1})^{-1} = a$.

²A binary operation is a function/operation taking in two elements of \mathbb{F} and returning a third element of \mathbb{F} .

1.2.4 Proposition. In any field, the following properties hold.

- (i) 0a = 0 for all a.
- (ii) If ab = 0, then either a = 0 or b = 0. (We say \mathbb{F} "has no divisors of zero".)
- (iii) (-a)b = a(-b) = -(ab) for all a and b. In particular -a = (-1)a.
- (iv) (-a)(-b) = ab for all a and b.

1.2.5 Problem. In a field, show that if $b \neq 0$ and $d \neq 0$ then

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

1.2.6 Definition. An ordered field is a field \mathbb{F} equipped with a total order, so a set with a relation \leq and two operations + and \cdot satisfying axioms (O1)–(O4) and (F1)–(F10), which is additionally required to satisfy the following axioms:

- **(OF1)** (Compatibility of order and addition) If $a \leq b$ then $a + c \leq b + c$ for any c.
- **(OF2)** (Compatibility of order and multiplication) If $a \le b$ and $0 \le c$, then $ac \le bc$.

1.2.7 Example. Which examples from Example 1.2.2 are ordered fields? In case there is not an obvious order, is there any order at all satisfying (OF1) and (OF2)?

1.2.8 Proposition. The following properties always hold in an ordered field.

- (a) If $0 \le a$ then $-a \le 0$.
- (b) If $0 \le a$ and $0 \le b$ then $0 \le ab$. (In fact, this is equivalent to (OF2) and is often used in place of it as the other ordered field axiom).
- (c) If $a \leq 0$ and $0 \leq b$, then $ab \leq 0$.
- (d) $0 \le a^2$ for any a. In particular 0 < 1.
- (e) If $0 < a \le b$ then $0 < b^{-1} \le a^{-1}$.

In light of Proposition 1.2.4.(ii) the above identities hold with strict inequality < used in place of inequality \leq .

1.2.9 Problem. Let \mathbb{F} be an ordered field and consider the subset $Z \subset \mathbb{F}$ generated by taking 0, 1, 1+1, 1+1+1, etc. along with -1, -1 - 1, -1 - 1, -1 - 1, etc. Show that this set is in bijection with the set of integers \mathbb{Z} .

Likewise, let $Q \subset \mathbb{F}$ be the subset generated by taking the multiplicative inverses of the nonzero elements in Z along with their integer multiples. Show that this set is in bijection with \mathbb{Q} .

Thus every ordered field contains a copy of \mathbb{Q} , which may be regarded as the "smallest" possible ordered field.