DIFFERENTIAL EQUATIONS - TERMINOLOGY

An ordinary differential equation is an equation involving an unknown function of one variable \(x(t) \) and its derivatives. The most general form of such an equation is

\[
G(t, x, x', x^{(n)}) = 0
\]

for some function \(G \) of \((n + 2)\) variables, though in reasonably nice circumstances\(^1\) we may rewrite this in proper form

\[
x^{(n)} = F(t, x, x', \ldots, x^{(n-1)})
\]

for some other function \(F \). The highest order derivative which occurs in the equation (here \(n \)) is called the order of the differential equation. An \(n \)th order equation is always equivalent to a first order (\(n \)-dimensional) system of equations, wherein \(x(t) \) is replaced by \(X(t) = (x_1(t), \ldots, x_n(t)) \), a function with vector values in \(\mathbb{R}^n \). Following the book, we will write scalar valued functions in lower case and vector valued functions in upper case.

Thus we consider general equations of first order:

\[
X' = F(t, X), \quad \text{or} \quad x' = F(t, x).
\]

Such an equation is autonomous if \(F \) does not depend on \(t \), i.e.

\[
X' = F(X).
\]

An equation is linear if \(F \) is linear in \(X \), so

\[
X' = A(t)X + B(t)
\]

for \(n \times n \) matrix valued \(A(t) \) and \(\mathbb{R}^n \) valued \(B(t) \). Combining these two, a linear autonomous equation is therefore of the form

\[
X' = AX
\]

for a constant matrix \(A \).

There are generally many solutions to a differential equation; under typical circumstances\(^2\) an \(n \)-dimensional system has an \(n \)-parameter family of solutions called the general solution, and a unique particular solution satisfying each initial condition

\[
X(0) = X_0, \quad X_0 \in \mathbb{R}^n.
\]

For example, for an autonomous linear system, the general solution is of the form

\[
X(t) = c_1X_1(t) + \cdots + c_nX_n(t)
\]

where \(c_i \in \mathbb{R}, \ i = 1, \ldots, n \), and \(\{X_1(t), \ldots, X_n(t)\} \) are linearly independent for all \(t \), meaning no \(X_i(t) \) can be written as a linear combination of the others.

\(^1\)To be precise, under the condition that the derivative of \(G \) with respect to its last variable is not 0, we may employ the Implicit Function Theorem of multivariable calculus to prove that such an \(F \) exists.

\(^2\)Specifically, under the hypotheses of the Existence/Uniqueness Theorem for differential equations which we will prove later in the semester.
From now on we consider autonomous equations. Of particular importance are **equilibrium solutions**, which are solutions $X(t) = \text{constant}$, and can be found by solving

$$F(X) = 0$$

since $X(t)$ is constant if and only if $X'(t) = 0$. An equilibrium solution is **stable** if all nearby solutions approach it asymptotically as $t \to \infty$, and **unstable** if they diverge from it as $t \to \infty$ (equivalently, if they approach it as $t \to -\infty$).

We say a family of differential equations $X' = F(X, a)$ depending on some parameter a undergoes a **bifurcation** for some value of a if the overall structure of equilibria and/or their stability changes as a crosses this value.