
Math 1530 Final Exam Spring 2013

Name:

• The exam will last 3 hours.

• There are 9 problems worth 12 points each.

• No notes or other study materials allowed.

• Please turn your phone off.

• Use the back side of the test pages for scratch work, or if you need extra space.
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Problem 1. Determine whether the following statements are True or False:

(a) Every subgroup of a cyclic group is cyclic.

Solution. True.

(b) Every group is isomorphic to a subgroup of a permutation group.

Solution. True: this is Cayley’s theorem. Namely G embeds faithfully into SG when it
acts on itself by left multiplication.

(c) If a group G acts on a set A and a ∈ A, then the number of elements in the orbit of a
divides |G| .

Solution. True. |Oa| = [G : SG(a)] where SG(a) is the stabilizer of a.

(d) If I and J are ideals of a ring R, then the set {ab : a ∈ I, b ∈ J} is an ideal in R.

Solution. False in general. The correct replacement is IJ which consists of finite sums
of elements of the form ab, where a ∈ I and b ∈ J.



Problem 2. Let R be an integral domain and complete the following statements.

(a) An ideal I ⊆ R is principal if and only if:

Solution. I = (a) is generated by a single element a ∈ R.

(b) An element r ∈ R is irreducible if and only if:

Solution. r is not a unit and r = ab implies that a or b is a unit.

(c) R is a Euclidean Domain if and only if:

Solution. R is an integral domain, there exists a norm N : R −→ N (meaning N(0) = 0)
and for any a, b in R there exist q, r ∈ R such that a = q b + r, and N(r) < N(b) or
r = 0.

(d) R is a Unique Factorization Domain if and only if:

Solution. Every element r ∈ R can be written as a finite product of irreducibles r =
p1 · · · pn, which are unique up to associates (multiplication by units), and the order in
which they appear.



Problem 3. Let G = Z/60Z and φ : G −→ G′ a group homomorphism to another group
G′. List the possible isomorphism types for the image group Im(φ).

Solution. By the first isomorphism theorem, Im(φ) ∼= R/ ker(φ) where ker(φ) may be any
normal subgroup in G. Since G is abelian this may be any subgroup. The subgroups in G
are those generated by divisors of 50 (if you like, by the lattice isomorphism theorem, or we
proved this directly in class), so G = 〈1〉 , 〈2〉 , 〈5〉 , 〈10〉 , 〈25〉 , and 〈50〉 = {0}.

For any of these, G/ 〈n〉 ∼= Z/nZ, say, by the third isomorphism theorem: G/ 〈n〉 =
(Z/50Z)/(nZ/50Z) ∼= Z/nZ. (We also proved this directly in class, I believe.)

So the possible isomorphism types are

{0} , Z/2Z, Z/5Z, Z/10Z, Z/25Z, Z/50Z.



Problem 4. Let G be an abelian group. Show that the set R = Hom(G,G) of (not nec-
essarily invertible) group homomorphisms from G to itself, equipped with the operations of
pointwise addition and composition, has the structure of a ring with identity.

Solution. First observe that R is closed under these operations; if f, h ∈ R then f + h and
f ◦ h are homomorphisms, since for g1, g2 ∈ G,

(f + h) (g1 + g2) = f(g1 + g2) + h(g1 + g2)

= f(g1) + h(g1) + f(g2) + h(g2) = (f + h) (g1) + (f + h) (g2),

(f ◦ h)(g1 + g2) = f
(
h(g1 + g2)

)
= f

(
h(g1)

)
+ f

(
h(g2)

)
= (f ◦ h)(g1) + (f ◦ h)(g2)

Next, under pointwise addition, R forms an abelian group: the additive identity is the
0 homomorphism 0(g) = 0 for all G, the inverse of a homomorphism f is given by the
homomorphism −f taking g ∈ G to −f(g) ∈ G, and that addition is associative and
commutative in R follows from associativity and commutativity of addition in G.

Multiplication is given by composition, which is associative. It distributes over addition
on the left by the homomorphism property:(

f ◦ (h+ l)
)
(g) = f

(
h(g) + l(g)

)
= f

(
h(g)

)
+ f

(
l(g)

)
= (f ◦ h) (g) + (f ◦ l) (g),

and on the right directly:(
(f + h) ◦ l

)
(g) = (f + h)(l(g)) = f

(
l(g)

)
+ h

(
l(g)

)
= (f ◦ l)(g) + (h ◦ l)(g).

The multiplicative identity is given by the identity homomorphism 1(g) = g for all g ∈ G.



Problem 5. Suppose φ : R −→ F is a ring homomorphism from a ring R to a field F .
Prove that ker(φ) is a prime ideal.

Solution. By the first isomorphism theorem,

R/ ker(φ) ∼= Im(φ) ⊆ F.

F is a field, and therefore also an integral domain, so Im(φ) has no zerodivisors. This is
equivalent to ker(φ) being prime.

Alternatively, this may be proved directly. Suppose ab ∈ ker(φ). Then

0 = φ(ab) = φ(a)φ(b) =⇒ φ(a) = 0 or φ(b) = 0

since F has no zerodivisors. Thus a ∈ ker(φ) or b ∈ ker(φ), so ker(φ) is prime.



Problem 6. Let p(x) = x3 + x+ 1 ∈ F2[x], where F2 = Z/2Z.

(a) Show that p(x) is irreducible, and deduce that K = F2[x]/
(
p(x)

)
is a field in which p(x)

has a root. What is the order of K (i.e. how many elements does it have)?

Solution. By direct inspection, p(0) = 1 6= 0 and p(1) = 1 6= 0, so p(x) has no roots.
Since deg

(
p(x)

)
= 3, this shows p(x) is irreducible. It follows that p(x) is prime, hence(

p(x)
)

is prime and therefore maximal (since F2[x] is a PID), so K is a field. Letting
θ = x mod

(
p(x)

)
be the image of x in K, it follows that p(θ) = 0 ∈ K. Since p has

degree 3, [K : F ] = 3 so K has 23 = 8 elements.

(b) Let θ be a root of p(x) in K, and compute
1 + θ + θ2

1 + θ
∈ K. Your answer should be of

the form a+ bθ + cθ2, where a, b, c ∈ F2.

Solution. Using division with remainder,

x3 + x+ 1 = (x2 + x)(x+ 1) + 1 =⇒ 1 = (x2 + x)(x+ 1) + (x3 + x+ 1)

so that (1 + θ)−1 = θ + θ2 ∈ K. Next,

(x2 + x+ 1)(x2 + x) = x4 + x = x(x3 + x+ 1) + x2

so that
1 + θ + θ2

1 + θ
= (1 + θ + θ2)(θ + θ2) = θ2 ∈ K.



Problem 7. Let R be a ring with elements a, b ∈ R. We say m ∈ R is a least common
multiple if both a and b divide m, and if m′ is any other element divisible by both a and b
then m divides m′. If R is a PID, prove that a least common multiple always exists.

Solution. There are (at least) three ways to prove this. First, translating the LCM property
into the language of ideals, it follows that m is a least common multiple of a and b if
(m) ⊆ (a) ∩ (b) and if (m′) ⊆ (a) ∩ (b), then (m′) ⊆ (m).

Since R is a PID, the ideal (a)∩ (b) is principal, so (a)∩ (b) = (m) for some m, which is
therefore a least common multiple.

Alternatively, we can use the fact that a PID is a UFD and suppose that a = upα1
1 · · · pαn

n

and b = vpβ11 · · · pβnn be factorizations of a and b into irreducibles pi (here u and v are units).
Then a least common multiple is given by

m = p
max(α1,β1)
1 · · · pmax(αn,βn)

n .

Finally a method which did not occur to me before writing this problem but which was
used by a few students is to construct a least common multiple from a greatest common
divisor. Let (d) = (a, b) so d is a GCD of a and b (using the PID property). Then since
ab ∈ (a, b) = (d) it follows that

ab = md, for some m ∈ R,

and m can be shown to be a least common multiple. Indeed, since d divides a, a = a′d for
some a′, so

ab = a′bd = md =⇒ a′b = m ⇐⇒ b
∣∣ m.

Similarly a
∣∣ m. If a

∣∣ m′ and b
∣∣ m′ for some other m′, then

m′ = c1a = c2b.

Multiplying by b and a respectively, one gets

bm′ = c1ab, am′ = c2ab,

bm′ = c1md, am′ = c2md,

Now d = xa+ yb for some x, y ∈ R (this is one of the properties of a GCD and can be seen
from the fact that d ∈ (a, b) ≡ (a) + (b).) so,

dm′ = xam′ + ybm′ = xc2md+ yc1md = md(xc2 + yc1),

=⇒ m′ = m(xc2 + yc1),

so m divides m′. (Hat tip to Ittai Baum for this proof).



Problem 8. Let G be a finite group of order 56 = 7 · 23. Prove that G must have a normal
subgroup. (Hint: Use the Sylow theorem and then count the elements of various orders.)

Solution. By the Sylow theorem the number n7(G) of Sylow 7-subgroups satisfies

n7(G) ≡ 1 mod 7, n7(G)
∣∣ |G| = 56,

from which it follows that n7(G) is either 1 or 8. In the first case G has a unique, and hence
normal, subgroup of order 7.

In the case that n7(G) = 8, the eight Sylow 7-subgroups must intersect trivially (since
they have the same prime order the intersection of two of them is a subgroup, hence must
be trivial or else they would be the same). Thus there are 8 · 6 = 48 elements of order 7 in
G, which leaves room for only 56−48 = 8 other elements including the identity. None of the
elements of order 7 can be in a Sylow 2-subgroup, which must have order 23 = 8, so there
must be exactly one Sylow 2-subgroup, which is therefore normal.



Problem 9. Let f(x) = x2 − (α + β)x + αβ = (x − α)(x − β) ∈ C[x], where α 6= β ∈ C.
Describe all the ideals in the ring R = C[x]/

(
f(x)

)
.

Solution. By the lattice isomorphism theorem, the ideals in R are in bijection with the ideals
I in C[x] containing

(
f(x)

)
. Since C[x] is a PID, such an I =

(
p(x)

)
for some p(x) and then

the fact that
(
f(x)

)
⊆ I =

(
p(x)

)
is equivalent to

p(x)
∣∣ f(x) = (x− α)(x− β).

Since (x− α) and (x− β) are irreducible and C[x] is a UFD, the only possibilities are

p(x) = u, p(x) = v(x− α), p(x) = w(x− β), or p(x) = z(x− α)(x− β)

where u, v, w, z 6= 0 are units, corresponding to ideals

I = C[x], I = (x− α), I = (x− β), or I =
(
f(x)

)
.

In R these descend to the ideals

R, (x− α), (x− β), or(0),

where x denotes the image of x in R.


