Math 1530 Final Exam Spring 2013

Name:

The exam will last 3 hours.

There are 9 problems worth 12 points each.

No notes or other study materials allowed.

Please turn your phone off.

Use the back side of the test pages for scratch work, or if you need extra space.

Total




Problem 1. Determine whether the following statements are True or False:

(a)

(b)

Every subgroup of a cyclic group is cyclic.
Solution. True. O
Every group is isomorphic to a subgroup of a permutation group.

Solution. True: this is Cayley’s theorem. Namely GG embeds faithfully into Sg when it
acts on itself by left multiplication. O]

If a group G acts on a set A and a € A, then the number of elements in the orbit of a

divides |G .
Solution. True. |O,| =[G : Sg(a)] where Sg(a) is the stabilizer of a. O
If I and J are ideals of a ring R, then the set {ab:a € I,b € J} is an ideal in R.

Solution. False in general. The correct replacement is /.J which consists of finite sums
of elements of the form ab, where a € I and b € J. n



Problem 2. Let R be an integral domain and complete the following statements.
(a) Anideal I C R is principal if and only if:
Solution. I = (a) is generated by a single element a € R. ]
(b) An element r € R is irreducible if and only if:
Solution. r is not a unit and r = ab implies that a or b is a unit. O
(¢) R is a Euclidean Domain if and only if:
Solution. R is an integral domain, there exists a norm N : R — N (meaning N (0) = 0)
and for any a,b in R there exist ¢, € R such that a = gb+ r, and N(r) < N(b) or
r=0. [
(d) R is a Unique Factorization Domain if and only if:
Solution. Every element r € R can be written as a finite product of irreducibles r =

P1- - Pn, Which are unique up to associates (multiplication by units), and the order in
which they appear. O



Problem 3. Let G = Z/60Z and ¢ : G — G’ a group homomorphism to another group
G’. List the possible isomorphism types for the image group Im(¢).

Solution. By the first isomorphism theorem, Im(¢) = R/ker(¢) where ker(¢) may be any
normal subgroup in GG. Since G is abelian this may be any subgroup. The subgroups in G
are those generated by divisors of 50 (if you like, by the lattice isomorphism theorem, or we
proved this directly in class), so G = (1), (2),(5), (10), (25), and (50) = {0}.

For any of these, G/ (n) = Z/nZ, say, by the third isomorphism theorem: G/ (n) =
(Z/50Z)/(nZ/50Z) = Z/nZ. (We also proved this directly in class, I believe.)

So the possible isomorphism types are

{0}, Z/2Z., 7./5Z, 7.J10Z, 7./25Z, 7./50Z. 0



Problem 4. Let G be an abelian group. Show that the set R = Hom(G, G) of (not nec-
essarily invertible) group homomorphisms from G to itself, equipped with the operations of
pointwise addition and composition, has the structure of a ring with identity.

Solution. First observe that R is closed under these operations; if f,h € R then f + h and
f o h are homomorphisms, since for g1, g2 € G,

(f +h) (g1 +92) = f(g1+ g2) + h(g1 + g2)
= f(g1) + h(g1) + f(g2) + h(g2) = (f + 1) (91) + (f + D) (92),
(foh)(g1+g2) = f(hlgr + g2)) = f(R(g1)) + f(R(g2)) = (f o h)(g1) + (f © h)(g2)

Next, under pointwise addition, R forms an abelian group: the additive identity is the
0 homomorphism 0(g) = 0 for all G, the inverse of a homomorphism f is given by the
homomorphism —f taking ¢ € G to —f(g) € G, and that addition is associative and
commutative in R follows from associativity and commutativity of addition in G.

Multiplication is given by composition, which is associative. It distributes over addition
on the left by the homomorphism property:

(fo(h+0D)(9) = f(h(g)+1(g) = f(h(g) + f(I(9) = (foh)(g)+ (fol)(g),

and on the right directly:

((f +h)ol)(g) = (f +h)(Ug)) = f(I(g) + h(i(g)) = (f o 1)(g) + (hol)(g).

The multiplicative identity is given by the identity homomorphism 1(g) = g forallg € G. O



Problem 5. Suppose ¢ : R — F' is a ring homomorphism from a ring R to a field F.
Prove that ker(¢) is a prime ideal.

Solution. By the first isomorphism theorem,
R/ ker(¢) = Im(@) C F.

F is a field, and therefore also an integral domain, so Im(¢) has no zerodivisors. This is
equivalent to ker(¢) being prime.
Alternatively, this may be proved directly. Suppose ab € ker(¢). Then

0= $(ab) = $(a)g(b) —> (a) =0 or ¢(5) = 0

since F' has no zerodivisors. Thus a € ker(¢) or b € ker(¢), so ker(¢) is prime. H



Problem 6. Let p(z) = 2 + x + 1 € Fy[z], where Fy = Z/27Z.

(a)

Show that p(x) is irreducible, and deduce that K = Fa[z]/(p(z)) is a field in which p(x)
has a root. What is the order of K (i.e. how many elements does it have)?

Solution. By direct inspection, p(0) = 1 # 0 and p(1) = 1 # 0, so p(z) has no roots.
Since deg (p(x)) = 3, this shows p(z) is irreducible. It follows that p(z) is prime, hence
(p(z)) is prime and therefore maximal (since Fy[z] is a PID), so K is a field. Letting
0 =z mod (p(z)) be the image of z in K, it follows that p(d) = 0 € K. Since p has
degree 3, [K : F] =3 so K has 2° = 8 elements. O

1+0+ 062
Let 0 be a root of p(x) in K, and compute % € K. Your answer should be of

the form a + b + c6?, where a, b, c € .

Solution. Using division with remainder,
Prr+l=@+2) 2+ 1) +1 = 1= +2)z+ 1)+ @ +z+1)
so that (14+6)~!' =6+ 6% € K. Next,
(*+z+1)(2* +2)=a"+z=2("+2+1)+ 27
so that

1+60+6°

150 =(1+0+60)0+060%) =06%cK.



Problem 7. Let R be a ring with elements a,b € R. We say m € R is a least common
multiple if both a and b divide m, and if m’ is any other element divisible by both a and b
then m divides m’. If R is a PID, prove that a least common multiple always exists.

Solution. There are (at least) three ways to prove this. First, translating the LCM property
into the language of ideals, it follows that m is a least common multiple of a and b if
(m) C (a) N (b) and if (m') C (a) N (b), then (m') C (m).

Since R is a PID, the ideal (a) N (b) is principal, so (a) N (b) = (m) for some m, which is
therefore a least common multiple.

Alternatively, we can use the fact that a PID is a UFD and suppose that a = up]* - - - po»
and b = vp? ... pf be factorizations of a and b into irreducibles p; (here u and v are units).
Then a least common multiple is given by

max(a1,61)

m = pl maX(an 7/871)

..pn .

Finally a method which did not occur to me before writing this problem but which was
used by a few students is to construct a least common multiple from a greatest common
divisor. Let (d) = (a,b) so d is a GCD of a and b (using the PID property). Then since
ab € (a,b) = (d) it follows that

ab=md, for some m € R,

and m can be shown to be a least common multiple. Indeed, since d divides a, a = a’d for
some a’, so
ab=a'bd =md = db=m < b|m.

Similarly a | m. If a | m' and b | m’ for some other m/, then
m' = c1a = cyb.
Multiplying by b and a respectively, one gets

bm' = ciab, am' = cyab,

bm' = cymd, am’ = comd,

Now d = za + yb for some z,y € R (this is one of the properties of a GCD and can be seen
from the fact that d € (a,b) = (a) + (b).) so,

dm’ = zam' + ybm' = xcomd + yeymd = md(zey + yey),

= m' =m(zcy + yc1),

so m divides m/. (Hat tip to Ittai Baum for this proof). O



Problem 8. Let G be a finite group of order 56 = 7 - 23. Prove that G must have a normal
subgroup. (Hint: Use the Sylow theorem and then count the elements of various orders.)

Solution. By the Sylow theorem the number n;(G) of Sylow 7-subgroups satisfies
n(G)=1 mod 7, ny(G)| |G| =56,

from which it follows that n7(G) is either 1 or 8. In the first case G has a unique, and hence
normal, subgroup of order 7.

In the case that n;(G) = 8, the eight Sylow 7-subgroups must intersect trivially (since
they have the same prime order the intersection of two of them is a subgroup, hence must
be trivial or else they would be the same). Thus there are 8 - 6 = 48 elements of order 7 in
(G, which leaves room for only 56 — 48 = 8 other elements including the identity. None of the
elements of order 7 can be in a Sylow 2-subgroup, which must have order 2% = 8, so there
must be exactly one Sylow 2-subgroup, which is therefore normal. O



Problem 9. Let f(x) = 22 — (o + B8)z + af = (x — a)(x — B) € C[z|, where a # 3 € C.
Describe all the ideals in the ring R = C[z]/(f(z)).

Solution. By the lattice isomorphism theorem, the ideals in R are in bijection with the ideals
I in C[z] containing (f(z)). Since Clz] is a PID, such an I = (p(x)) for some p(z) and then
the fact that (f(z)) C I = (p(z)) is equivalent to

p(@) | f(z) = (z - a)(@ - B).
Since (z — «) and (z — ) are irreducible and C|x] is a UFD, the only possibilities are
p(@)=u, pla)=v(z—a), pl)=w(r—F), or p(r)=zz—a)x—B)
where u, v, w, z # 0 are units, corresponding to ideals
I=Clz], I=(—-a), I=(@-08), o I=(f(z)).
In R these descend to the ideals
R, @-a), (T-8), or(0),

where T denotes the image of x in R. O]



