
Math 1580 Midterm Exam 2011

Name:

• The exam will last 50 minutes.

• There are 5 problems worth 12 points each.

• No notes or other study materials allowed.

• Any calculators must be limited to basic arithmetic operations only. No scientific
calculators or smartphones.

• Use the backside of the test pages for scratch work, or if you need extra space.
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Problem 1. This question has 3 parts.

(a) Give a description of the Miller-Rabin algorithm for testing the primality of a given
number n.

(b) Suppose that the test fails for 10 randomly selected elements a. What is the approximate
probability that n is prime?

(c) Suppose you find that 8582 ≡ 1 (mod 736163). What can you conclude about the
number 736163?

Solution. (a) Let n−1 = 2kq, with q odd, and choose a randomly selected input a such that
1 ≤ a ≤ n− 1.

(1) Set a0 = aq (mod n) .

(2) If a0 ≡ 1 (mod n), then return fail (n might possibly be prime.)

(3) Loop over i = 0, 1, . . . , k − 1:

(4) If ai ≡ −1 (mod n), then return fail, otherwise set ai+1 ≡ a2i (mod n) and continue
looping.

(5) If the loop finishes, return composite.

(b) The probability that the algorithm fails given that n is composite is at most 1/4. There-
fore if the test fails 10 times, the probability that n is composite is approximately 4−10,
and therefore the probability that n is prime is approximately

1− 4−10.

(c) 736163 cannot be prime, otherwise the only solutions to x2 ≡ 1 (mod 736163) would be
1 and −1. In fact, (though you were not required to do this),

8582 − 1 ≡ 0 (mod 736163) =⇒ (858− 1)(858 + 1) = (857)(859) = k(736163)

for some k, and upon inspection, k = 1.
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Problem 2. Alice and Bob are using the ElGamal cryptosystem to exchange messages, with
prime p = 71 and primitive root g = 62. Alice chooses secret key a = 2, and computes her
public key A = ga ≡ 10 (mod 71) . Bob sends her the ciphertext

(c1, c2) = (gb, Abm) = (9, 1).

What is Bob’s message?

Solution. Alice needs to compute

m = A−bc2 = g−abc2 =
(
gb
)−a

c2 = c−a1 c2 (mod p) .

We compute
ca1 = 92 = 81 ≡ 10 (mod 71)

and from long division,

71 = 7 · 10 + 1 =⇒ −7 · 10 ≡ 1 (mod 71) =⇒ 10−1 ≡ −7 ≡ 64 (mod 71)

Finally,
m = 9−2 · 1 ≡ 10−1 · 1 ≡ 64 · 1 ≡ 64 (mod 71) .

3



Problem 3. Compute
55971018406 (mod 11) .

Solution. The easiest way is to use

55971018406 (mod 11) = (5597 (mod 11))(1018
406 (mod φ(11)))

= (5597 (mod 11))(1018 (mod 10))406 (mod φ(10))

and since φ(10) = φ(2)φ(5) = 4 and 406 (mod 4) = 2, we compute

1018406 (mod 10) ≡ 82 (mod 10) = 4.

Finally, 5597 = 5599− 2 = 11 · 509− 2 ≡ −2 ≡ 9 (mod 11) so

55971018406 (mod 11) = 94 (mod 11) ≡ 812 (mod 11) ≡ (−7)2 (mod 11) ≡ 49 (mod 11) = 5.

Alternatively, you could use fast powering to compute 1018406 (mod 10):

406 = 256 + 128 + 16 + 4 + 2 = 28 + 27 + 24 + 22 + 21

and computing successive squares mod 10,

i 0 1 2 3 4 5 6 7 8

82i (mod 10) 8 4 6 6 6 6 6 6 6

Thus
1018406 (mod 10) ≡ 828827824822821 ≡ 6 · 6 · 6 · 6 · 4 ≡ 4 (mod 10) .

The computation of 55971018406 (mod 11) is now the same.
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Problem 4. You already proved on a homework problem that for p an odd prime, the
congruence x2 ≡ a (mod p) either has no solutions, or it has two solutions.

(a) Let n = pq be the product of distinct odd primes. Show that if x2 ≡ a (mod n) has a
solution, then it has exactly four solutions.

(b) Suppose you had access to a machine that could tell you all four solutions. How could
you use this information to factor n?

Solution. (a) Let x0 be a solution to x2 ≡ a (mod n). It follows that the equations

x2 ≡ a (mod p) and x2 ≡ a (mod q)

each have two solutions since x0 (mod p) and x0 (mod q) are solutions.

Let b1, b2 be the solutions to x2 ≡ a (mod p) and c1, c2 be the solutions to x2 ≡
a (mod q) . By the Chinese Remainder Theorem, each of the simultaneous congruences

x ≡ bi (mod p) , x ≡ cj (mod q) , i, j ∈ {1, 2}

has a unique solution modulo n, and these must be distinct. Since there are four possi-
bilities for (i, j), this gives 4 distinct solutions to the original equation.

(b) By assumption we would have 4 distinct numbers di : i = 1, . . . , 4 which satisify d2i ≡
a (mod n) . Thus for any pair with i 6= j,

d2i − d2j ≡ 0 (mod n) =⇒ n|(di − dj)(di + dj)

and whenever we have this situation we can hope that gcd(di − dj, n) is a nontrivial
factor of n.

In fact di − dj will split n precisely when di ≡ dj (mod p) but di 6≡ dj (mod q) or vice
versa.
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Problem 5. This question has 2 parts.

(a) Prove that if f(x) = O
(
g(x)

)
and g(x) = O

(
h(x)

)
, then f(x) = O

(
h(x)

)
.

(b) If f(x) 6= O
(
g(x)

)
, then must it be true that g(x) = O

(
f(x)

)
? Justify your answer by

giving a proof or a counterexample.

Solution. (a) By assumption, there exist C1, c1, C2, c2 such that

x ≥ C1 =⇒ f(x) ≤ c1g(x) and x ≥ C2 =⇒ g(x) ≤ c2h(x).

Setting C = maxC1, C2 and c = c1c2 it follows that

x ≥ C =⇒ f(x) ≤ c1g(x) ≤ c1c2h(x) = ch(x)

and therefore f(x) = O
(
h(x)

)
.

(b) No. For instance

sin(x) 6= O
(

cos(x)
)

and cos(x) 6= O
(

sin(x)
)
.
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