Math 1580 – Problem Set 10. Due Friday Dec. 2, 4pm

Typo corrected 11/30 in Problem 2. Thanks to Keith and Huanzong for the catch.

Problem 1. For each of the following values of N, q and $\mathbf{a}(x)$, either find $\mathbf{a}(x)^{-1}$ in R_q or show that the inverse does not exist.

(a) N = 5, q = 11, and $\mathbf{a}(x) = x^4 + 8x + 3$. (b) N = 5, q = 13, and $\mathbf{a}(x) = x^3 + 2x - 3$.

(b) $N = 5, q = 15, \text{ and } \mathbf{a}(x) = x^{-1} + 2x - 5.$

Problem 2. Let $\mathbf{a}(x) \in (\mathbb{Z}/q\mathbb{Z})[x]$ where q is prime.

(a) Prove that

 $\mathbf{a}(1) \equiv 0 \pmod{q}$ if and only if $(x-1) \mid \mathbf{a}(x)$ in $(\mathbb{Z}/q\mathbb{Z})[x]$

(Hint: polynomial division with remainder works when q is prime.)

(b) Suppose that $\mathbf{a}(1) \equiv 0 \pmod{q}$. Prove that $\mathbf{a}(x)$ is not invertible in R_q . (In particular, ternary polynomials in $\mathcal{T}(d, d) \subset R$ never have inverses in R_q .)

Problem 3. Alice and Bob decide to communicate using the NTRU cryptosystem with parameters (N, p, q) = (7, 2, 29). Alice's public key is

$$\mathbf{h}(x) = 23 + 23x + 23x^2 + 24x^3 + 23x^4 + 24x^5 + 23x^6.$$

Bob sends Alice the plaintext message $\mathbf{m}(x) = 1 + x^5$ using the ephermal key $\mathbf{r}(x) = 1 + x + x^3 + x^6$. (a) What ciphertext does Bob send to Alice?

(b) Alice's secret key is $\mathbf{f}(x) = 1 + x + x^2 + x^4 + x^5$ and $\mathbf{F}_2(x) = 1 + x^5 + x^6$. Check your answer in (a) by using \mathbf{f} and \mathbf{F}_2 to decrypt the message.

Problem 4. The guidelines for choosing NTRU public paramters (N, p, q, d) require that gcd(p, q) = 1. Prove that if $p \mid q$, then it is very easy for Eve to decrypt the message without knowing the private key. (Hint: first do the case p = q.)