Math 1580 – Problem Set 9. Due Friday Nov. 18, 4pm

Updated 11/13 to fix a typo in Problem 1. Thanks to Sarah for the catch.

Problem 1. Recall the following method of cofactor expansion to calculate the determinant of an \(n \times n \) matrix \(A \). Let \(A_{ij} \) denote the \((n-1) \times (n-1)\) matrix obtained from \(A \) by removing the \(i \)th row and \(j \)th column, and \(a_{ij} \) denote the \(i, j \)th entry of \(A \). Then \(\det(A) \) can be calculated by fixing a row, say row \(k \), and computing

\[
\det(A) = \sum_{j=1}^{n} (-1)^{j+k} a_{kj} \det(A_{kj})
\]

Similarly, we may fix a column instead, say column \(k \), and compute

\[
\det(A) = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det(A_{ik})
\]

Given \(A \) as above, define the cofactor matrix\(^1\) \(B \) to be the matrix whose \(i, j \) entry is

\[
b_{ij} = (-1)^{i+j} \det(A_{ji})
\]

(a) Prove that

\[
AB = BA = \det(A)I_n
\]

where \(I_n \) is the identity matrix. Conclude that provided \(\det(A) \neq 0 \), \(A^{-1} \) is given by

\[
A^{-1} = \frac{1}{\det(A)} B
\]

(b) Use this to prove that if \(A \) has integer entries and \(\det(A) = \pm 1 \), then \(A^{-1} \) has these same properties.

(c) Conclude that the \(n \times n \) matrices with integer entries and determinant \(\pm 1 \) form a group with respect to matrix multiplication, which we call \(\text{GL}(n, \mathbb{Z}) \).

Problem 2. Let \(L \) be a lattice in \(\mathbb{R}^n \), and suppose \(\dim(L) = n = \dim(\mathbb{R}^n) \). Show that a linearly independent set \(\{v_1, \ldots, v_n\} \subset L \) is a basis for \(L \) if and only if

\[
L \cap \mathcal{F}(v_1, \ldots, v_n) = 0
\]

where \(\mathcal{F}(v_1, \ldots, v_n) \) is the fundamental domain for \(\{v_1, \ldots, v_n\} \) defined as in class by

\[
\mathcal{F}(v_1, \ldots, v_n) = \{t_1v_1 + \cdots + t_nv_n : 0 \leq t_i < 1, \text{ for all } i\}
\]

Some hints:

(a) To show that (1) holds if \(v_1, \ldots, v_n \) is a basis, suppose that there is a vector \(v \in L \cap \mathcal{F}(v_1, \ldots, v_n) \) and show that \(v \) must be the zero vector.

(b) To show the other direction, let \(L' \) be the lattice generated by the \(v_i \), so that \(L' \subseteq L \). To show that \(L \subseteq L' \), let \(v \in L \) and write \(v \) as a linear combination (not necessarily with integer entries) of the \(v_i \), and use this to find a vector \(v' \in L' \) such that \(v - v' \in \mathcal{F}(v_1, \ldots, v_n) \). Conclude that \(v \) must equal \(v' \).

\(^1\)This is sometimes also called the “adjugate matrix.” Very unfortunately, it also sometimes called the “adjoint matrix,” which is a terrible practice since there is a different matrix obtained from \(A \) which is also called the adjoint and deserves the title much more.
Problem 3. Let \(L \subset \mathbb{R}^m \) be a lattice with basis \(\{v_1, \ldots, v_n\} \). We showed in class how to compute \(\det(L) \) as \(|\det(F(v_1, \ldots, v_n)| \) in the case that \(m = n \), where

\[
F(v_1, \ldots, v_n) = \begin{pmatrix}
| & \cdots & | \\
v_1 & \cdots & v_n \\
| & \cdots & |
\end{pmatrix}
\]

is the matrix whose columns consist of the components of the \(v_i \) as vectors in \(\mathbb{R}^m \).

This problem will give a way to compute this quantity even when \(m > n \). Note that in this case, the matrix (2) is still well-defined as a \(m \times n \) matrix.

(a) If \(v_1, \ldots, v_n \) are vectors in \(\mathbb{R}^m \), define the Gram matrix \(\text{Gram}(v_1, \ldots, v_n) \) to be the \(n \times n \) matrix whose \(i, j \) entry is the quantity

\[
[\text{Gram}(v_1, \ldots, v_n)]_{ij} = v_i \cdot v_j, \quad 1 \leq i, j \leq n.
\]

Show that

\[
\text{Gram}(v_1, \ldots, v_n) = F(v_1, \ldots, v_n)^TF(v_1, \ldots, v_n)
\]

(b) Show that if \(n = m \), then

\[
\det(\text{Gram}(v_1, \ldots, v_n)) = \det(L)^2.
\]

(3)

(c) Show that if \(m > n \), then (3) still holds. Here are some hints:

(i) Argue that (3) holds if the \(v_i \) all lie in the subspace \(\{(x_1, \ldots, x_m) : x_{n+1} = \cdots = x_m = 0\} \subset \mathbb{R}^m \). We will reduce to this case below.

(ii) Remind yourself (or go learn!) that a (real valued) matrix is orthogonal if \(\det(R) = \pm 1 \), and that such matrices satisfy \(Rv_i \cdot Rv_j = v_i \cdot v_j \). Recall also that a matrix whose columns form a set of orthonormal vectors is an orthogonal matrix, and that orthogonal transformations preserve lengths, areas, volumes and so on. You may assume all these facts.

(iii) Enlarge the set \(\{v_1, \ldots, v_n\} \) to a basis \(\{v_1, \ldots, v_m\} \) for \(\mathbb{R}^m \) by adding \(m - n \) additional independent vectors. Let \(\{v_1^*, \ldots, v_m^*\} \) be an orthonormal set of vectors obtained from \(\{v_1, \ldots, v_m\} \) by the Gram-Schmidt procedure. Observe that the subspace spanned by the first \(n \) vectors in \(\{v_i^*\} \) is the same as that spanned by our original vectors \(\{v_1, \ldots, v_n\} \).

(iv) Form the orthogonal matrix \(R \) whose columns are the vectors \(v_1^*, \ldots, v_m^* \). Show that the linear transformation defined by \(R \) sends the subspace \(\{(x_{n+1} = \cdots = x_m = 0)\} \) to the space spanned by the vectors \(v_1, \ldots, v_n \). Argue that the inverse \(R^{-1} \) is also an orthogonal transformation, which does the reverse. Conclude the problem by showing that

\[
\text{Gram}(v_1, \ldots, v_n) = \text{Gram}(R^{-1}v_1, \ldots, R^{-1}v_n), \quad \text{and}
\]

\[
\text{Vol}_n(F(v_1, \ldots, v_n)) = \text{Vol}_n(F(R^{-1}v_1, \ldots, R^{-1}v_n))
\]

using your result from (cii) above.