
Math 350 Problem Set 10 Solutions

Part I

1. (10pts) Gauss' Law The electric �eld due to a unit point charge at the origin is

E(x; y; z) =
1

�3
(xi+ yj+ zk) =

xi+ yj+ zk

(x2 + y2 + z2)
3=2

Let S be an arbitrary closed surface in R3. Prove that




ZZ
S
E � n̂ dS =

(
0 If S does not enclose (0; 0; 0), and

4� if S encloses (0; 0; 0).

(Hints: Calculate the divergence of E, calculate the case in which S is a sphere of radius a centered at
(0; 0; 0), and use the Divergence Theorem judiciously.)

Solution. The divergence of E is (using the formulas @
@x� = �=x, @

@y� = �=y, etc)

r �E =

�
1

�3
� 3

x2

�5
+

1

�3
� 3

y2

�5
+

1

�3
� 3

z2

�5

�
=

3�2 � 3(x2 + y2 + z2)

�5
=

(
0 � 6= 0

unde�ned otherwise.

Thus if S does not enclose (0; 0; 0), then it is the boundary of a volumetric region V which doesn't
contain (0; 0; 0), and using the divergence theorem,




ZZ
S
E � n̂ dS =

ZZZ
V

r �E dV =

ZZZ
V

0 dV = 0 if (0; 0; 0) =2 V .

If S does enclose the origin, we have to work harder. First let us calculate the surface integral explicitly
for the sphere of radius a (with outward pointing normal). We parametrize using (�; �) 2 [0; 2�]�[0; �],
where dS = a2 sin�d� d�, and n̂ = (xi+ yj+ zk)=a, to get




ZZ
Sa
E � n̂ dS =

ZZ
Sa

1

a3
(xi+ yj+ zk) �

1

a
(xi+ yj+ zk)dV

=

Z
2�

0

Z �

0

1

a4
(x2 + y2 + z2)| {z }

=a2

a2 sin�d� d�

=

Z
2�

0

Z �

0

sin�d� d� = 4�:

Note that this answer is independent of a, so this is the answer for a sphere centered at (0; 0; 0) of
arbitrary radius.

Now, for a general surface S which encloses (0; 0; 0), choose a su�ciently small a so that Sa �ts entirely
inside S, and let V be the volumetric region between S and Sa. Note that since V doesn't contain
(0; 0; 0), we know that r�E = 0 in V . If the normal to both S and Sa is taken to be outward pointing,
then

@V = S � Sa

so, by the divergence theorem,




ZZ
@V

E � n̂ dS =


ZZ
S
E � n̂ dS �


ZZ
Sa
E � n̂ dS =

ZZZ
V

0 dV = 0:
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Rearranging this, we get




ZZ
S
E � n̂ dS =


ZZ
Sa
E � n̂ dS = 4�:

So we conclude that for an arbitrary closed surface S with outward normal,




ZZ
S
E � n̂ dS =

(
0 If S does not enclose (0; 0; 0), and

4� if S encloses (0; 0; 0).

2. (15pts) There is an analogous theorem to the characterization of conservative vector �elds that I proved
in class for divergence free vector �elds. In its most general form, it holds over regions R � R3 in which
every closed surface can be contracted to a point without leaving R. However that version is quite
di�cult, and the result of deep mathematics. Here you will prove a simpler version, where R = R

3.

Thus show that the following are equivalent (assume F is C1).

(a) r � F = 0 everywhere in R3

(b) For any closed surface S � R3,




ZZ
S
F � n̂ dS = 0:

(c) If S1 and S2 are oriented surfaces such that @S1 = @S2 (with the same orientation), thenZZ
S1
F � n̂ dS =

ZZ
S2
F � n̂ dS

(d) F = r�G for a vector �eld potential (a.k.a. vector potential) G(x; y; z).

Show also that any two vector potentials G and G0 must di�er by a conservative vector �eld:

G0 �G = rh for some h.

(Suggestion: Show that (a) () (b), that (b) () (c), and that (a) () (d). Hints: in showing that
(b) =) (a), use the fact that if a continuous function f satis�es

RRR
R
f dV = 0 for all R � R3, then

f = 0. In showing that (a) =) (d), try using G(x; y; z) = G1(x; y; z)i + G2(x; y; z)j + G3(x; y; z)k,
where

G1(x; y; z) =

Z z

0

F2(x; y; t) dt

G2(x; y; z) = �

Z z

0

F1(x; y; t) dt+

Z x

0

F3(t; y; 0) dt

G3(x; y; z) = 0

You will have to use the fact that r � F = 0. Of course this is not the only choice, as any other G
which di�ers by a gradient �eld will do. However, this is probably the easiest.)

Solution. First, we show (a) =) (b). So assume that r�F = 0 everywhere. Let S be a closed surface,
and suppose V is the region inside, so @V = S. Then




ZZ
S
F � n̂ dS =

ZZZ
V

r � F dV = 0

which proves (b).

Conversely, suppose (b) is true, so the surface integral of F vanishes for all closed surfaces. Then for
an arbitrary region V ,

0 =


ZZ
@V

F � n̂ dS =

ZZZ
V

r � F dV
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But if the integral of a function is 0 over every possible region, that function must vanish identically,
so we conclude

r � F = 0:

Now assume (b) is true, and we will prove (c). Let S1 and S2 be two surfaces with @S1 = @S2. Thus
they must have orientations which induce the same orientation on the curve @S1 = @S2, and we can
construct a closed surface

S = S1 � S2

which has a consistent orientation. But since surface integrals of F over closed surfaces are 0, we have

0 =


ZZ
S
F � n̂ dS =

ZZ
S1
F � n̂ dS �

ZZ
S2
F � n̂ dS

so the two terms must be equal.

Assuming (c) is true, let S be a closed surface, and cut it along a closed curve two get two surfaces S1
and S2. If S1 and S2 have the orientations from S, then @S1 = �@S2, so in fact S1 and the surface
�S2 have the same boundary. Thus




ZZ
S
F � n̂ dS =

ZZ
S1
F � n̂ dS +

ZZ
S2
F � n̂ dS =

ZZ
S1
F � n̂ dS �

ZZ
�S2

F � n̂ dS = 0

since S1 and �S2 share a common boundary, which proves (b).

Assume (a) is true, and we will prove (d). So r �F = 0 everywhere. Let G = G1i+G2j+G3k be the
vector �eld from the hint:

G1(x; y; z) =

Z z

0

F2(x; y; t) dt

G2(x; y; z) = �

Z z

0

F1(x; y; t) dt+

Z x

0

F3(t; y; 0) dt

G3(x; y; z) = 0

Compute the curl of G:

r�G =

�
@

@y
G3 �

@

@z
G2

�
i+

�
@

@z
G1 �

@

@x
G3

�
j+

�
@

@x
G2 �

@

@y
G1

�
k

By the fundamental theorem of calculus,

@G2

@z
(x; y; z = �F1(x; y; z)

@G2

@x
(x; y; z) = �

Z z

0

@

@x
F1(x; y; t) dt+ F3(x; y; 0)

@G1

@z
(x; y; z) = F2(x; y; z)

@G1

@y
(x; y; z) =

Z z

0

@

@y
F2(x; y; t) dt

so

(r�G)(x; y; z) = F1(x; y; z)i+F2(x; y; z)j+

�
F3(x; y; 0)�

Z z

0

�
@

@x
F2(x; y; t) +

@

@y
F1(x; y; t)

�
dt

�
k:

Since r � F = 0, in particular at a point (x; y; t), we have

@

@x
F1(x; y; t) +

@

@y
F2(x; y; t) = �

@

@z
F3(x; y; t):
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so the third term in the curl becomes

F3(x; y; 0)�

Z z

0

�
@

@x
F2(x; y; t) +

@

@y
F1(x; y; t)

�
dt = F3(x; y; 0) +

Z z

0

@

@z
F3(x; y; t) dt = F3(x; y; z)

and thus
(r�G)(x; y; z) = F1(x; y; z)i+ F2(x; y; z)j+ F3(x; y; z)k = F(x; y; z)

and (d) is proved.

Finally, showing that (d) =) (a) is easy, since if F = r�G,

r � F = r � (r�G) = 0

as you showed on the last pset.

For the last claim, suppose G and G0 are vector potentials for F so that

F = r�G = r�G0:

Therefore
r� (G�G0) = F� F = 0

everywhere, and so G�G0 is conservative:

G�G0 = rh; for some scalar function h(x; y; z).
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Part II

1. (5pts) Use Stokes' Theorem to calculate the work integralI
C
F � ds

where F = x sin z i+xy2 j+y2 cosxk and C is the unit circle in the x-y plane, oriented counterclockwise.

Solution. We compute

r� F = 2y cosx i+
�
x cos z + y2 sinx

�
j+ y2 k:

We can choose S however we like, as long as @S = C. We see from the form of the curl of F, that a
good choice is to take S to be the unit disk in the x-y plane, since then we can take n̂ = k, and then
F � n̂ dS = y2 dx dy. Thus,I

C
F � ds =

ZZ
S
r� F � n̂ dS =

ZZ
S
y2 dx dy =

Z
2�

0

Z
1

0

r2 sin2 � r dr d� =
�

4
:

2. (5pts) For what constants a and b is the vector �eld

F = (a sin z + bxy2)i+ 2x2yj+ (x cos z � z2)k

conservative? For these values of a and b, �nd a potential function f (so that F = rf).

Solution. F will be conservative (on all of R3) if r� F = 0 everywhere. We compute

r� F = 0 i+ (a cos z � cos z) j+ (4xy � 2bxy) k = 0 () a = 1; b = 2:

Using these constants, we �nd a potential function f , �rst by requiring

fx(x; y; z) = sin z + 2xy2 =) f(x; y; z) = x sin z + x2y2 + g(y; z):

Then
fy(x; y; z) = 2x2y + gy(y; z) = 2x2y =) gy(y; z) = 0 =) g(y; z) = h(z):

Finally,

fz(x; y; z) = x cos z + h0(z) = x cos z � z2 =) h0(z) = �z2 =) h(z) = �
z3

3
+ c

where we can take c = 0 if we like. Thus a potential function is given by

f(x; y; z) = x sin z + x2y2 �
z3

3
:

3. (5pts) Verify the Divergence Theorem (i.e. calculate both sides and verify that they are equal)




ZZ
S=@V

F � n̂ dS =

ZZZ
V

r � F dV

where F = 2xi+ 2yj� zk, and V is the region bounded by z = x2 + y2 and the plane z = 2.

Solution. The left hand side consists of two surface integrals. Let S = S1 + S2 where S1 is the surface
z = x2 + y2 : 0 � z � 2 with downward pointing n̂ (so that n̂ points away from V ), and S1 is the disk
z = 2 : x2 + y2 � 2 in the plane z = 2 with upward pointing n̂.
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On S1 we have n̂ dS = (zxi+ zyj� k) dx dy = (2xi+ 2yj� k) dx dy and we computeZZ
S1
F � n̂ dS =

ZZ
Dp

2

4x2 + 4y2 + (x2 + y2) dx dy =

Z
2�

0

Z p
2

0

5r2 r dr d� = 10�:

On S2 we have n̂ dS = k dx dy, F = 2xi+ 2yj� 2k, and we computeZZ
S2
F � n̂ dS =

ZZ
Dp

2

�2 dx dy = �4�:

Thus




ZZ
S
F � n̂ dS =

Z
S1
F � n̂ dS +

Z
S2
F � n̂ dS = 6�:

On the other hand,

r � F =
@

@x
(2x) +

@

@y
(2y) +

@

@z
(�z) = 3

so ZZZ
V

r � F dV =

Z
2�

0

Z p
2

0

Z
2

r2
3r dz dr d� = 2�

Z p
2

0

3r
�
2� r2

�
dr = 6�:

4. (5pts) Use the Divergence Theorem to determine the 
ux integralZZ
S
F � n̂ dS

where F = (x+ yz2)i+ x2z j+ z k, and S is the upper (z � 0) unit hemisphere with upward pointing
normal vector. (Note: S is not a closed surface.)

Solution. We get a closed surface S 0 by taking S and adding the unit disk D1 =
�
x2 + y2 � 1

	
with

downward pointing unit normal n̂ = k. Then S 0 = @V where V is the solid unit hemisphere. According
to the Divergence Theorem,




ZZ
S0
F � n̂ dS =

ZZ
S
F � n̂ dS +

ZZ
D1

F � n̂ dS =

ZZZ
V

r � F dV:

Rearranging this, we have thatZZ
S
F � n̂ dS =

ZZZ
V

r � F dV �

ZZ
D1

F � n̂ dS:

The divergence of F is

r � F =
@

@x
(x+ yz2) +

@

@y
(x2z) +

@

@z
(z) = 2:

so ZZZ
V

r � F dV = 2

�
1

2

4

3
�

�
=

4

3
�:

As for the other term, we have ZZ
D1

F � n̂ dS =

Z
2�

0

Z
1

0

�z dx dy = 0

since z = 0 on the x-y plane. Thus we concludeZZ
S
F � n̂ dS =

4

3
�:

6



5. Let V be the tetrahedron (four sided �gure) with vertices P0 = (0; 0; 0), P1 = (1; 0; 1), P2 = (1; 0;�1)
and P3 = (1; 1; 0).

(a) (2pts) For each of the four sides, give the orientation (in terms of order of the vertices) on the
boundary curve of that side consistent with an outward pointing surface normal vector (pointing
away from the tetrahedron).

Solution. These should be oriented by P0P1P3, P0P2P1, P1P2P3, P0P3P2, respectively (or any
cyclic permutations thereof).

(b) (2pts) Compute directly the work integral I
C
F � ds

where F = yzj� y2k, and C is the boundary curve of the side P0P1P3, with orientation as in part
(a).

Solution. We break this up into three integrals over the curves C1 = P0P1 : f(x; y; z) = (t; 0; t) j 0 � t � 1g,
C2 = P1P3 : f(x; y; z) = (1; t; 1� t) j 0 � t � 1g and C3P3P0 : f(x; y; z) = (�t;�t; 0) j � 1 � t � 0g.

We �nd Z
C1
F � ds = 0

since y = 0 =) F = 0 on C1. On C2,Z
C2
F � ds =

Z
1

0

t� t2 + t2 dt =
1

2
:

On C3, we have, since z = 0 and ds has no k componentZ
C3
F � ds = 0:

So I
C
F � ds =

1

2
:

(c) (2pts) Use Stokes' Theorem to compute the work done around the boundary curves of each of the
four faces (including the one in part (b)), with orientations as in (a).

Solution. First o�, we compute the curl of F, obtaining

r� F = �3yi

Let us begin with the surface S1 = P0P1P3. The equation of this plane is z = x � y, with
upward normal, and so n̂ dS = (�i+ j� k) dx dy. The shadow region on the x-y plane is R =
f(x; y) j 0 � x � 1; 0 � y � xg. We computeZZ

S1
r� F � n̂ dS =

Z
1

0

Z x

0

3y dy dx =
1

2
:

which agrees with the above.

The surface S2 = P0P3P2 lies in the plane z = y � x, and with n̂ pointing down, we have
n̂ dS = (�i+ j+ k) dx dy, with the same shadow region R as the previous surface. Since all that
has changed is the sign on the k vector, and since r � F has no k component, the integral will
be the same as that over S1:ZZ

S2
r� F � n̂ dS =

Z
1

0

Z x

0

3y dy dx =
1

2
:
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On S3 = P0P2P1 which lies in the x-z plane, we have n̂ = �j, by inspection. Since r�F has no
j component, ZZ

S3
r� F � n̂ dS = 0

Finally, on S4 = P1P2P3, which lies in the plane x = 1, we have n̂ = i and dS = dy dz, with a
shadow region R0 = f(y; z) j y � 1 � z � 1� y; 0 � y � 1g. ThusZZ

S3
r� F � n̂ dS =

Z
1

0

Z
1�y

y�1
�3y dz dy =

Z
1

0

6y(y � 1) dy = �1:

(d) The sum of these four values should be 0. Explain this in two ways:

i. (2pts) geometrically, by considering the various line integrals being added together, and

Solution. Given the orientations on the closed curves @Si : i = 1; 2; 3; 4, We see that the total
work integral

4X
i=1

I
@Si

F � ds =

4X
i=1

r� F � n̂ dS

must vanish, since each line segment PiPj : 0 � i < j � 4 appears exactly twice, with opposite
orientations.

ii. (2pts) by using the Divergence Theorem to compute the 
ux of r�F out of the tetrahedron.

Solution. The divergence of any curl is always zero, so

r � (r� F) = 0

and therefore ZZZ
V

r � (r� F) dV = 0

where V is the solid tetrahedron bounded by Si : i = 1; 2; 3; 4. But since we oriented Si to
point away from V , the Divergence Theorem gives

4X
i=1

ZZ
Si
r� F � n̂ dS =


ZZ
@V

r� F � n̂ dS =

ZZZ
V

r � (r� F) dV = 0:
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