Math 350 Problem Set 1 (Part II) (due Friday 9/10 by 3pm)

- 1. Sketch some level curves $(L_c = \{(x, y) | f(x, y) = c\}$ for some choices of c) and the graph of the following functions.
 - (a) (5pts) $f(x, y) = (x^2 + y^2)^{1/2}$
 - (b) (5pts) f(x, y) = x/y
- 2. (5pts) Sketch the level surfaces $(L_c = \{(x, y, z) | f(x, y, z) = c\})$ for c = 0 and c = 1 of the function

$$f(x, y, z) = xy + z^2$$

- 3. Evaluate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions. Is the function differentiable?
 - (a) (3pts) $f(x,y) = \frac{x}{y} + \frac{y}{x}$ (b) (3pts)

$$f(x, y, z) = xyz^2$$

- 4. For each of the following functions $f : \mathbb{R}^n \to \mathbb{R}$ and curves $\mathbf{c} : \mathbb{R} \to \mathbb{R}^n$, compute the gradient of f and the velocity of \mathbf{c} . Use this to compute the derivative of $f \circ \mathbf{c} : \mathbb{R} \to \mathbb{R}$ at t = 0.
 - (a) (5pts) n = 2. $f(x, y) = e^{xy} \sin y$, $\mathbf{c}(t) = (2, t)$.
 - (b) (5pts) n = 3. $f(x, y, z) = x^2 + y^2 + z^2$, $\mathbf{c}(t) = (t, \cos t, \sin t)$.
- 5. (5pts) Points in 3 dimensional space \mathbb{R}^3 can be described by not only **cartesian coordinates** (x, y, z), but also by **spherical coordinates** (ρ, θ, ϕ) (which we'll cover in much detail later in the term). We can write the former in terms of the latter by

$$\begin{aligned} x &= \rho \cos \theta \sin \phi \\ y &= \rho \sin \theta \sin \phi \\ z &= \rho \cos \phi, \end{aligned}$$

which can be thought of as a function $[0,\infty) \times [0,2\pi] \times [0,\pi] \subset \mathbb{R}^3 \to \mathbb{R}^3$, $(\rho,\theta,\phi) \mapsto (x,y,z) = (\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$. Suppose we have a scalar function $f : \mathbb{R}^3 \to \mathbb{R}$, $(x,y,z) \mapsto f(x,y,z)$. Write the expressions for $\frac{\partial f}{\partial \rho}$, $\frac{\partial f}{\partial \theta}$, and $\frac{\partial f}{\partial \phi}$ in terms of $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ using the chain rule.