Math 350 Problem Set 2 (Part I) Solutions

1. Mean Value Theorems:

(a)

(10pts) Use the Mean Value Theorem from single variable calculus to prove the Mean Value
Theorem below for scalar functions of several variables. A convex set A C R" is a set such that,
for any two points in A, the line segment between them is also in A:

x,y€EA = {(1-t)x+ty|0<t<1}CA

Theorem (MVT). If f: A CR"™ — R is differentiable on a convex set A, for any pair of points
x,y € A, we have

f) = fy) =Vf(z)-(x—y) =Df(z)(x —y)
for somez e {(1-t)x+ty |0<t<1} C A.

Proof. Let ¢ : R — R"™ be the curve t — (1 — t)x + ty = x + t(y — x), so the composition
foc:R — R is a single variable function given by

t f((1—t)x +ty).
By the Mean Value Theorem in single variable calculus,

d(foc)

(foe)(0) - (Foo)1) = =12

(") (0—1), for some t' € [0, 1].
However, evaluating this expression and using the chain rule, we have

f(x) = f(y) =Df((c(t))De(t')(0 — 1) = =Df(z)c'(t') = -Df(2)(y — x) = Df(z)(x —y)
where z = (1 — t")x + t'y = c(t'). O
(Sorry about the minus signs. It would have been clearer to write the line between x and y as
{tx+(1—t)y [0<t<1}).

(10pts) Why is the analogous statement (using the D f form of the right hand side) false in general
for a vector valued function f : R®™ — R"™ when m > 17

Since f(x) = (f1(x),. .., fm(x)), where the f;(x) are scalar functions, we know from part (a) that
there exist points zq, ..., %,;, on the line segment between x and y such that

fi(x) = fi(y) =Dfi(zi)(x — y),
and certainly we have that

fi(x) = fi(y) D fi(z1)
fx)=fy) = : = : (x—y)
fm (%) = fin(y) D fm(2zm)
where the D f;(z;) (which are 1 x n matrices) provide the rows for a m x n matrix. However, we

cannot guarantee that zy = z5 = --- = z,, in general, so this matrix is not generally equal to
Df(z) for any z.



2. (5pts) What is the derivative of a constant function f : R® — R™, (so (z1,...,Zn) = (fi,-.-, fm),

where each f; € R is independent of x)? Prove your answer using the definition of the derivative; i.e.
that the derivative is the unique linear function T : R™ — R™ such that

1f(x) = f(%0) = T(x =x0)ll _

lim 0
X—Xo [Ix = xol|
The derivative of such a function is identically 0 for all x; that is,
Df(x)=0
where 0 : R — R™ is the linear function x — (0,...,0) for all z, which is represented by the zero
matrix
0 --- 0
0 --- 0

Indeed, we have

fo G0 = F00) = 06— x0)l| _ 0= 0Ge—x0)| _ . 10-0] _
o I =l o =l e Jx = ol

0.

. (5pts) What is the derivative of a linear function f : R™ — R™, (so f(ax +by) = af(x) + bf(y) for all
x,y € R?, a,b € R)? Prove your answer using the definition of the derivative.

The derivative of f at x is supposed to be the “best linear approximation to f” at x. Since f is already
linear, it is best approximated by f itself. Thus, Df(x) = f for all x. Indeed,

po 16 = Fx0) = Fx = xo)ll _ £ Ge = x0) = £(x = xo)
< = ol N

=0

using the property of linearity that f(x) — f(xg) = f(x — xo)-

. (10pts) A function f: A C R® — B C R" is said to be invertible if there exists a function (called the
inverse) f~! : B C R® — A C R" such that

fTlof=1d:A—- A and fof'=1d:B— B,
where Id is the identity function which maps each point to itself,
Id:R® > R", xm—x.

(Note that the dimension of the domain and range must be the same, and note that f~*(x) does not
mean 1/f(x) unless n = 1, since division does not make sense for n > 1.)

Show that if f : A C R® — B C R" is invertible, and if f is differentiable at xo € A, then f~! is
differentiable at yo = f(x0) with derivative

D (1) (yo) = (Df(x0)) ™"
(Hint: use the chain rule and your result from problem 3).

Since (f~! o f) = Id is differentiable at xg, it follows that f~! is differentiable at yo. (It’s OK if you
did not make this argument, but rather assumed that f~! was differentiable at yq). What’s left is to
show that D(f~!)(yo) is an inverse to D f(xg), i.e. that

ADf(Xo) = Id, Df(Xo) A= Id,



where A = D(f~1)(yo).
But using the fact that Id is linear, so D(Id)(x) = Id, and the chain rule, we have

Id = D(Id)(x0) = D(f ™" o f)(x0) = D(f~")(y0) Df(x0)
and
Id = D(Id)(yo) = D(f o f})(y0) = Df(x0) D(f~")(0),

so by definition of invertibility, we have
D(f )(yo) = (Df(x0)) -
. (10pts) In class (and in Ch. 2.6 in the book), we discussed the product rule

D(fg)(x0) = g(x0)Df(x0) + f(x0)Dyg(x0)
for scalar functions f,g : R® — R, where the product fg : R® —» R, x — f(x)g(x) is ordinary
multiplication in R.

For vector valued functions f,g : R™ — R™, we can form the dot product function (note that it is
scalar valued!)

F-9:R* SR, xm f(x Zfz

where the product is the dot product in R™. Formulate and prove a product rule for the dot product.
You may use the scalar version of the product rule in your proof, and any other properties of derivatives
discussed in class. (Hint: in formulating your result in a concise manner, you may be interested in
the transpose operation on matrices A — AT. If A is an r x s matrix, AT is a s x r matrix with

(AT);; = Aj;, that is, the rows and columns are swapped with one another.)

Since f - g is a function from R” to R, we expect D(f - g)(x) to be a linear map from R” to R, that is,
a 1 x n matrix. Using the sum and product rules, we have

D(f - g)( <Z fi(x ) = Z (fi(x)Dgi(x) + g:(x)D fi(x)) -

Each term in the sum is a scalar, such as f;(x), times a 1 X n matrix, such as Dg;(x), so the result is
indeed a 1 x n matrix. We can write this more economically by noting that

[Dgi(x)];; = [Dy(x)];;
i (x)

that is, the entry in the jth column of the 1 x n matrix Dg;(x) (which is 8‘%’% ), is equal to the entry

in the ith row, jth column entry of the m x n matrix Dg(x).

Thus, using the formula [AB];;, = >_; A4;; By, for matrix multiplication, we have

DG 96y = 3 (60 Dyl + i) DF],) = [/60T Dyl + 90T DI )],

i=1
for the entry in each column, and so
D(f-9)(x) = f(x)" Dg(x) + g(x)" Df(x)

Note that fT(x) is a 1 x m matrix and Dg(x) is an m x n matrix, (similarly for g*(x) and D f(x)) so
the result is a 1 X n matrix, as expected.

This can equivalently be written as

D(f - 9)(x) = (Dg(x))" f(x) + (Df(x))" g(x).



