
Math 350 Problem Set 2 (Part I) Solutions

1. Mean Value Theorems:

(a) (10pts) Use the Mean Value Theorem from single variable calculus to prove the Mean Value
Theorem below for scalar functions of several variables. A convex set A � Rn is a set such that,
for any two points in A, the line segment between them is also in A:

x;y 2 A =) f(1� t)x+ ty j 0 � t � 1g � A

Theorem (MVT). If f : A � Rn ! R is di�erentiable on a convex set A, for any pair of points

x;y 2 A, we have

f(x)� f(y) = rf(z) � (x� y) = Df(z)(x� y)

for some z 2 f(1� t)x+ ty j 0 � t � 1g � A.

Proof. Let c : R ! R
n be the curve t 7! (1 � t)x + ty = x + t(y � x), so the composition

f � c : R! R is a single variable function given by

t 7! f((1� t)x+ ty):

By the Mean Value Theorem in single variable calculus,

(f � c)(0)� (f � c)(1) =
d(f � c)

dt
(t0)(0� 1); for some t0 2 [0; 1].

However, evaluating this expression and using the chain rule, we have

f(x)� f(y) = Df((c(t0))Dc(t0)(0� 1) = �Df(z)c0(t0) = �Df(z)(y � x) = Df(z)(x� y)

where z = (1� t0)x+ t0y = c(t0).

(Sorry about the minus signs. It would have been clearer to write the line between x and y as
ftx+ (1� t)y j 0 � t � 1g).

(b) (10pts) Why is the analogous statement (using theDf form of the right hand side) false in general
for a vector valued function f : Rn ! R

m when m > 1?

Since f(x) = (f1(x); : : : ; fm(x)), where the fi(x) are scalar functions, we know from part (a) that
there exist points z1; : : : ; zm on the line segment between x and y such that

fi(x)� fi(y) = Dfi(zi)(x� y);

and certainly we have that

f(x)� f(y) =

2
64
f1(x)� f1(y)

...
fm(x)� fm(y)

3
75 =

2
64
Df1(z1)

...
Dfm(zm)

3
75 (x� y)

where the Dfi(zi) (which are 1� n matrices) provide the rows for a m� n matrix. However, we
cannot guarantee that z1 = z2 = � � � = zm in general, so this matrix is not generally equal to
Df(z) for any z.
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2. (5pts) What is the derivative of a constant function f : Rn ! R
m, (so (x1; : : : ; xn) 7! (f1; : : : ; fm),

where each fi 2 R is independent of x)? Prove your answer using the de�nition of the derivative; i.e.
that the derivative is the unique linear function T : Rn ! R

m such that

lim
x!x0

kf(x)� f(x0)�T(x� x0)k

kx� x0k
= 0

The derivative of such a function is identically 0 for all x; that is,

Df(x) = 0

where 0 : Rn ! R
m is the linear function x 7! (0; : : : ; 0) for all x, which is represented by the zero

matrix

0 =

2
64
0 � � � 0
...

. . .
...

0 � � � 0

3
75 :

Indeed, we have

lim
x!x0

kf(x)� f(x0)� 0(x� x0)k

kx� x0k
= lim

x!x0

k0� 0(x� x0)k

kx� x0k
= lim

x!x0

k0� 0k

kx� x0k
= 0:

3. (5pts) What is the derivative of a linear function f : Rn ! R
m, (so f(ax+ by) = af(x) + bf(y) for all

x;y 2 Rn, a; b 2 R)? Prove your answer using the de�nition of the derivative.

The derivative of f at x is supposed to be the \best linear approximation to f" at x. Since f is already
linear, it is best approximated by f itself. Thus, Df(x) = f for all x. Indeed,

lim
x!x0

kf(x)� f(x0)� f(x� x0)k

kx� x0k
= lim

x!x0

kf(x� x0)� f(x� x0)k

kx� x0k
= 0

using the property of linearity that f(x)� f(x0) = f(x� x0).

4. (10pts) A function f : A � Rn ! B � Rn is said to be invertible if there exists a function (called the
inverse) f�1 : B � Rn ! A � Rn such that

f�1 � f = Id : A! A and f � f�1 = Id : B ! B;

where Id is the identity function which maps each point to itself,

Id : Rn ! R
n; x 7! x:

(Note that the dimension of the domain and range must be the same, and note that f�1(x) does not
mean 1=f(x) unless n = 1, since division does not make sense for n > 1.)

Show that if f : A � R
n ! B � R

n is invertible, and if f is di�erentiable at x0 2 A, then f�1 is
di�erentiable at y0 = f(x0) with derivative

D
�
f�1

�
(y0) = (Df(x0))

�1
:

(Hint: use the chain rule and your result from problem 3).

Since (f�1 � f) = Id is di�erentiable at x0, it follows that f
�1 is di�erentiable at y0. (It's OK if you

did not make this argument, but rather assumed that f�1 was di�erentiable at y0). What's left is to
show that D(f�1)(y0) is an inverse to Df(x0), i.e. that

ADf(x0) = Id; Df(x0)A = Id;
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where A = D(f�1)(y0).

But using the fact that Id is linear, so D(Id)(x) = Id, and the chain rule, we have

Id = D(Id)(x0) = D(f�1 � f)(x0) = D(f�1)(y0)Df(x0)

and
Id = D(Id)(y0) = D(f � f�1)(y0) = Df(x0)D(f�1)(y0);

so by de�nition of invertibility, we have

D(f�1)(y0) = (Df(x0))
�1

:

5. (10pts) In class (and in Ch. 2.6 in the book), we discussed the product rule

D(fg)(x0) = g(x0)Df(x0) + f(x0)Dg(x0)

for scalar functions f; g : Rn ! R, where the product fg : Rn ! R; x 7! f(x)g(x) is ordinary
multiplication in R.

For vector valued functions f; g : Rn ! R
m, we can form the dot product function (note that it is

scalar valued!)

f � g : Rn ! R; x 7! f(x) � g(x) =

mX
i=1

fi(x)gi(x)

where the product is the dot product in Rm. Formulate and prove a product rule for the dot product.
You may use the scalar version of the product rule in your proof, and any other properties of derivatives
discussed in class. (Hint: in formulating your result in a concise manner, you may be interested in
the transpose operation on matrices A 7! AT. If A is an r � s matrix, AT is a s � r matrix with
(AT)ij = Aji, that is, the rows and columns are swapped with one another.)

Since f � g is a function from R
n to R, we expect D(f � g)(x) to be a linear map from R

n to R, that is,
a 1� n matrix. Using the sum and product rules, we have

D(f � g)(x) = D

 
mX
i=1

fi(x)gi(x)

!
=

mX
i=1

(fi(x)Dgi(x) + gi(x)Dfi(x)) :

Each term in the sum is a scalar, such as fi(x), times a 1� n matrix, such as Dgi(x), so the result is
indeed a 1� n matrix. We can write this more economically by noting that

[Dgi(x)]1j = [Dg(x)]ij

that is, the entry in the jth column of the 1� n matrix Dgi(x) (which is @gi(x)
@xj

), is equal to the entry

in the ith row, jth column entry of the m� n matrix Dg(x).

Thus, using the formula [AB]ik =
P

j AijBjk for matrix multiplication, we have

[D(f � g)(x)]1j =

mX
i=1

�
fi(x) [Dg(x)]ij + gi(x) [Df(x)]ij

�
=
�
f(x)TDg(x) + g(x)TDf(x)

�
1j
;

for the entry in each column, and so

D(f � g)(x) = f(x)TDg(x) + g(x)TDf(x)

Note that fT(x) is a 1�m matrix and Dg(x) is an m� n matrix, (similarly for gT(x) and Df(x)) so
the result is a 1� n matrix, as expected.

This can equivalently be written as

D(f � g)(x) = (Dg(x))
T
f(x) + (Df(x))

T
g(x):
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