1. **Mean Value Theorems:**

(a) (10pts) Use the Mean Value Theorem from single variable calculus to prove the Mean Value Theorem below for scalar functions of several variables. A **convex set** \(A \subset \mathbb{R}^n \) is a set such that, for any two points in \(A \), the line segment between them is also in \(A \):

\[
x, y \in A \implies \{(1 - t)x + ty \mid 0 \leq t \leq 1\} \subset A
\]

Theorem (MVT). If \(f : A \subset \mathbb{R}^n \to \mathbb{R} \) is differentiable on a convex set \(A \), for any pair of points \(x, y \in A \), we have

\[
f(x) - f(y) = \nabla f(z) \cdot (x - y) = Df(z)(x - y)
\]

for some \(z \in \{(1 - t)x + ty \mid 0 \leq t \leq 1\} \subset A \).

Proof. Let \(c : \mathbb{R} \to \mathbb{R}^n \) be the curve \(t \mapsto (1 - t)x + ty = x + t(y - x) \), so the composition \(f \circ c : \mathbb{R} \to \mathbb{R} \) is a single variable function given by

\[
t \mapsto f((1 - t)x + ty).
\]

By the Mean Value Theorem in single variable calculus,

\[
(f \circ c)(0) - (f \circ c)(1) = \frac{d(f \circ c)}{dt}(t')(0 - 1), \quad \text{for some } t' \in [0, 1].
\]

However, evaluating this expression and using the chain rule, we have

\[
f(x) - f(y) = Df((c(t')))|_{t'(0-1)} = -Df(z)c'(t') = -Df(z)(y - x) = Df(z)(x - y)
\]

where \(z = (1 - t')x + t'y = c(t') \).

(Sorry about the minus signs. It would have been clearer to write the line between \(x \) and \(y \) as \((tx + (1 - t)y) \mid 0 \leq t \leq 1 \)).

(b) (10pts) Why is the analogous statement (using the \(Df \) form of the right hand side) false in general for a vector valued function \(f : \mathbb{R}^n \to \mathbb{R}^m \) when \(m > 1 \)?

Since \(f(x) = (f_1(x), \ldots, f_m(x)) \), where the \(f_i(x) \) are scalar functions, we know from part (a) that there exist points \(z_1, \ldots, z_m \) on the line segment between \(x \) and \(y \) such that

\[
f_i(x) - f_i(y) = Df_i(z_i)(x - y),
\]

and certainly we have that

\[
f(x) - f(y) = \begin{bmatrix} f_1(x) - f_1(y) \\ \vdots \\ f_m(x) - f_m(y) \end{bmatrix} = \begin{bmatrix} Df_1(z_1) \\ \vdots \\ Df_m(z_m) \end{bmatrix} (x - y)
\]

where the \(Df_i(z_i) \) (which are \(1 \times n \) matrices) provide the rows for a \(m \times n \) matrix. However, we cannot guarantee that \(z_1 = z_2 = \cdots = z_m \) in general, so this matrix is not generally equal to \(Df(z) \) for any \(z \).
2. (5pts) What is the derivative of a constant function \(f : \mathbb{R}^n \to \mathbb{R}^m \), (so \((x_1, \ldots , x_n) \mapsto (f_1, \ldots , f_m)\)), where each \(f_i \in \mathbb{R} \) is independent of \(x \)? Prove your answer using the definition of the derivative; i.e. that the derivative is the unique linear function \(T : \mathbb{R}^n \to \mathbb{R}^m \) such that

\[
\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - T(x - x_0)\|}{\|x - x_0\|} = 0
\]

The derivative of such a function is identically 0 for all \(x \); that is,

\[Df(x) = 0 \]

where \(0 : \mathbb{R}^n \to \mathbb{R}^m \) is the linear function \(x \mapsto (0, \ldots , 0) \) for all \(x \), which is represented by the zero matrix

\[
0 = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix}
\]

Indeed, we have

\[
\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - 0(x - x_0)\|}{\|x - x_0\|} = \lim_{x \to x_0} \frac{\|0 - 0(x - x_0)\|}{\|x - x_0\|} = \lim_{x \to x_0} \frac{\|0 - 0\|}{\|x - x_0\|} = 0.
\]

3. (5pts) What is the derivative of a linear function \(f : \mathbb{R}^n \to \mathbb{R}^m \), (so \(f(ax + by) = a f(x) + b f(y) \) for all \(x, y \in \mathbb{R}^n \), \(a, b \in \mathbb{R} \))? Prove your answer using the definition of the derivative.

The derivative of \(f \) at \(x \) is supposed to be the “best linear approximation to \(f \)” at \(x \). Since \(f \) is already linear, it is best approximated by \(f \) itself. Thus, \(Df(x) = f \) for all \(x \). Indeed,

\[
\lim_{x \to x_0} \frac{\|f(x) - f(x_0) - f(x - x_0)\|}{\|x - x_0\|} = \lim_{x \to x_0} \|f(x - x_0) - f(x - x_0)\| = 0
\]

using the property of linearity that \(f(x) - f(x_0) = f(x - x_0) \).

4. (10pts) A function \(f : A \subset \mathbb{R}^n \to B \subset \mathbb{R}^n \) is said to be **invertible** if there exists a function (called the inverse) \(f^{-1} : B \subset \mathbb{R}^n \to A \subset \mathbb{R}^n \) such that

\[
 f^{-1} \circ f = \text{Id} : A \to A \quad \text{and} \quad f \circ f^{-1} = \text{Id} : B \to B,
\]

where \(\text{Id} \) is the **identity function** which maps each point to itself,

\[
\text{Id} : \mathbb{R}^n \to \mathbb{R}^n, \quad x \mapsto x.
\]

(Note that the dimension of the domain and range must be the same, and note that \(f^{-1}(x) \) does not mean \(1/f(x) \) unless \(n = 1 \), since division does not make sense for \(n > 1 \).)

Show that if \(f : A \subset \mathbb{R}^n \to B \subset \mathbb{R}^n \) is invertible, and if \(f \) is differentiable at \(x_0 \in A \), then \(f^{-1} \) is differentiable at \(y_0 = f(x_0) \) with derivative

\[
Df^{-1}(y_0) = (Df(x_0))^{-1}.
\]

(Hint: use the chain rule and your result from problem 3).

Since \((f^{-1} \circ f) = \text{Id} \) is differentiable at \(x_0 \), it follows that \(f^{-1} \) is differentiable at \(y_0 \). (It’s OK if you did not make this argument, but rather assumed that \(f^{-1} \) was differentiable at \(y_0 \)). What’s left is to show that \(Df^{-1}(y_0) \) is an inverse to \(Df(x_0) \), i.e. that

\[
ADf(x_0) = \text{Id}, \quad Df(x_0)A = \text{Id},
\]
where $A = \mathbf{D}(f^{-1})(y_0)$.

But using the fact that Id is linear, so $\mathbf{D}(\text{Id})(x) = \text{Id}$, and the chain rule, we have

$$\text{Id} = \mathbf{D}(\text{Id})(x_0) = \mathbf{D}(f^{-1} \circ f)(x_0) = \mathbf{D}(f^{-1})(y_0) \mathbf{D} f(x_0)$$

and

$$\text{Id} = \mathbf{D}(\text{Id})(y_0) = \mathbf{D}(f \circ f^{-1})(y_0) = \mathbf{D} f(x_0) \mathbf{D}(f^{-1})(y_0),$$

so by definition of invertibility, we have

$$\mathbf{D}(f^{-1})(y_0) = (\mathbf{D} f(x_0))^{-1}.$$

5. (10pts) In class (and in Ch. 2.6 in the book), we discussed the product rule

$$\mathbf{D}(fg)(x_0) = g(x_0) \mathbf{D} f(x_0) + f(x_0) \mathbf{D} g(x_0)$$

for scalar functions $f, g : \mathbb{R}^n \to \mathbb{R}$, where the product $fg : \mathbb{R}^n \to \mathbb{R}$, $x \mapsto f(x)g(x)$ is ordinary multiplication in \mathbb{R}.

For vector valued functions $f, g : \mathbb{R}^n \to \mathbb{R}^m$, we can form the dot product function (note that it is scalar valued!)

$$f \cdot g : \mathbb{R}^n \to \mathbb{R}, \quad x \mapsto f(x) \cdot g(x) = \sum_{i=1}^m f_i(x)g_i(x)$$

where the product is the dot product in \mathbb{R}^m. Formulate and prove a product rule for the dot product. You may use the scalar version of the product rule in your proof, and any other properties of derivatives discussed in class. (Hint: in formulating your result in a concise manner, you may be interested in the transpose operation on matrices $A \mapsto A^T$. If A is an $r \times s$ matrix, A^T is a $s \times r$ matrix with $(A^T)_{ij} = A_{ji}$, that is, the rows and columns are swapped with one another.)

Since $f \cdot g$ is a function from \mathbb{R}^n to \mathbb{R}, we expect $\mathbf{D}(f \cdot g)(x)$ to be a linear map from \mathbb{R}^n to \mathbb{R}, that is, a $1 \times n$ matrix. Using the sum and product rules, we have

$$\mathbf{D}(f \cdot g)(x) = \mathbf{D} \left(\sum_{i=1}^m f_i(x)g_i(x) \right) = \sum_{i=1}^m (f_i(x) \mathbf{D} g_i(x) + g_i(x) \mathbf{D} f_i(x)).$$

Each term in the sum is a scalar, such as $f_i(x)$, times a $1 \times n$ matrix, such as $\mathbf{D} g_i(x)$, so the result is indeed a $1 \times n$ matrix. We can write this more economically by noting that

$$[\mathbf{D} g_i(x)]_{1j} = [\mathbf{D} g(x)]_{ij}$$

that is, the entry in the jth column of the $1 \times n$ matrix $\mathbf{D} g_i(x)$ (which is $\frac{\partial g_i(x)}{\partial x_j}$), is equal to the entry in the ith row, jth column entry of the $m \times n$ matrix $\mathbf{D} g(x)$.

Thus, using the formula $[AB]_{ik} = \sum_j A_{ij}B_{jk}$ for matrix multiplication, we have

$$[\mathbf{D}(f \cdot g)(x)]_{1j} = \sum_{i=1}^m \left(f_i(x) [\mathbf{D} g_i(x)]_{ij} + g_i(x) [\mathbf{D} f_i(x)]_{ij} \right) = [f(x)^T \mathbf{D} g(x) + g(x)^T \mathbf{D} f(x)]_{1j},$$

for the entry in each column, and so

$$\mathbf{D}(f \cdot g)(x) = f(x)^T \mathbf{D} g(x) + g(x)^T \mathbf{D} f(x)$$

Note that $f^T(x)$ is a $1 \times m$ matrix and $\mathbf{D} g(x)$ is an $m \times n$ matrix, (similarly for $g^T(x)$ and $\mathbf{D} f(x)$) so the result is a $1 \times n$ matrix, as expected.

This can equivalently be written as

$$\mathbf{D}(f \cdot g)(x) = (\mathbf{D} g(x))^T f(x) + (\mathbf{D} f(x))^T g(x).$$