
Math 350 Problem Set 3 Part I Solutions

1. (5pts) Write the expression for the kth term in the Taylor series approximation of f : Rn ! R. You
need not prove your answer, but think about why it is correct.

In the approximation for f(x0 + h) in terms of f and its derivatives at x0, the kth term is

1

k!

nX
i1;:::;ik=1

@kf

@xi1 � � � @xik
(x0)hi1 � � �hik :

This follows from iterating the proof that we did in class to determine the �rst and second terms.
Writing g(t) = f(x0 + th), the term is equal to 1

k!g
(k)(0). We determine g(k)(t) inductively. By the

chain rule,

g0(t) = Df(x0 + th) � h =

nX
i1=1

@f

@xi1
(x0 + th)hi1

Then given that the (k � 1)st derivative of g at t has the form

g(k�1)(t) =

nX
i1;:::;ik�1=1

@k�1f

@xi1 � � � @xik�1
(x0)hi1 � � �hik�1 ;

we di�erentiate each term, and use the chain rule to get

g(k)(t) =

nX
i1;:::;ik�1=1

nX
ik=1

@

@xik

�
@k�1f

@xi1 � � � @xik�1
(x0)hi1 � � �hik�1

�
hik

and the result then follows by collecting the summations, using symmetry of mixed partial derivatives,
evaluating at t = 0 and putting the requisite 1

k! in front.

2. Smooth versus analytic functions. We've discussed the function classes C1(Rn), C2(Rn) and so
on; the function class Ck(Rn) is the set

Ck(Rn) =

�
f : Rn ! R

��� @kf

@xi1@xi2 � � � @xik
2 C0(Rn) for all 1 � i1; : : : ; ik � n

�
:

Smooth functions, which we denote by the class C1(Rn), are those which are in Ck(Rn) for every

k. That is, f is smooth if every partial derivative of every order of f exists and is continuous. If f is
smooth, we can write its Taylor approximation as an in�nite series, since all derivatives exist:

f(x0 + h) = f(x0) +

nX
i=1

@f

@xi
(x0)hi + � � �+R1(x0;h)

where

lim
khk!0

R1(x0;h)

khk
k

= 0 for all k.

Analytic functions, denoted C!(Rn) are smooth functions which are equal to their Taylor series;
that is,

f 2 C!(Rn) () R1(x0;h) = 0:

Of course we have C!(Rn) � C1(Rn) � � � � � C2(Rn) � C1(Rn) � C0(Rn).
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(a) (10pts) Show that there are smooth functions in C1(R) which are not analytic, by showing that

f : R! R; t 7!

(
e�1=t for t > 0

0 for t � 0

is a counterexample. That is, show that all derivatives of e�1=t at t = 0 are equal to 0, so that
the Taylor series of e�1=t at t = 0 is

1X
k=1

f (k)(0)tk

k!
= 0

Nevertheless, e�1=t 6= 0 for t > 0. What is the remainder term R1(0; t)?

(Hint: Show that dkf(t)
dtk

has the form pk(t)
e�1=t

t2k
where pk(t) is some polynomial of order k � 1,

which you need not calculate explicitly. You may use the fact that negative exponentials decay
faster than any polynomial. Don't knock yourself out on this part.)

Clearly the derivative from the left of f(t) at t = 0 is 0. So we need to show that

lim
t!0+

dk

dtk

�
e�1=t

�
= 0 for all k:

We'll prove the claim in the hint by induction. (You needn't have been this formal; taking the
�rst two derivatives and then generalizing would be OK). The claim is true for k = 0, namely
that

e�1=t =
1 e�1=t

t0k

and 1 = p1(t) is certainly a polynomial of order 0 = 1�1. Now assume the claim is true for k�1,
and we'll prove that it's true for k. So our assumption is that

dk�1

dtk�1

�
e�1=t

�
=

pk�1(t)e
�1=t

t2(k�1)

where pk�1(t) is a polynomial of order (k � 1)� 1 = k � 2. Let's di�erentiate this. We get

dk

dtk

�
e�1=t

�
=

p0k�1(t)e
�1=t

t2(k�1)
+

pk�1(t)e
�1=t

t2 t2(k�1)
� 2(k � 1)

pk�1(t)e
�1=t

t2(k�1)+1
;

di�erentiating pk�1(t), e
�1=t, and t�2(k�1), respectively. Putting everything over the common

denominator t2k, we get

dk

dtk

�
e�1=t

�
=

�
t2 p0k�1(t) + pk�1(t)� 2(k � 1)t pk�1(t)

�
e�1=t

t2k
:

Consider the order of the polynomial multiplying e�1=t. p0k�1(t) is of order k � 3, since it's the
derivative of a polynomial of order k � 2, so t2 p0k�1(t) has order k � 3 + 2 = k � 1. pk�1(t) has
order k � 2, so that's �ne, and t pk�1(t) has order k � 2 + 1 = k � 1. So

pk(t) :=
�
t2p0k�1(t) + (1� 2(k � 1)t)pk�1(t)

�
has order k � 1 as claimed.

Now we need to show that

lim
t!0+

pk(t)e
�1=t

t2k
= 0:
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In fact it su�ces to show that

lim
t!0+

c e�1=t

t2k
= 0:

since jpk(t)j � c for some c when t is su�ciently small. You can use the fact that I gave you,
namely that negative exponentials decay faster than any polynomial, obtaining

lim
s!1

c s2k e�s = 0

where s = 1=t. To be completely rigorous, however, one would have to work a bit harder, using
the power series formula for e1=t:

c t�2k =
c (2k + 1)!

(2k + 1)!t2k
� c (2k + 1)!

1X
n=0

1

n!
t

�
1

t

�n

= c (2k + 1)! t e1=t

so
c e�1=t

t2k
� c (2k + 1)! t! 0 as t! 0.

(b) (10pts) Produce an example of a function f 2 C1(Rn), n > 1 which is not analytic, and which
depends explicitly on all variables (i.e. not just the function (x1; : : : ; xn) 7! e�1=x1 .)

(Hint: Compose some reasonable function g : Rn ! R with e�1=t : R! R and argue convincingly
using the chain rule.)

Let g(x1; : : : ; xn) = x1 + x2 + � � �+ xn. So our function is

x 7!

(
e�1=x1+���+xn if xi > 0 for all i,

0 otherwise

Its derivative at x is

D(f � g)(x) = f 0(g(x))Dg(x) = f 0(g(x))
�
1 1 � � � 1

�
by the chain rule. As x! 0, Dg(x) is constant, while

f 0(g(x0))! 0:

The second derivative at x is

D2(f � g)(x) = f 00(g(x))

2
641 � � � 1
...

. . .
...

1 � � � 1

3
75

which again goes to 0. Higher derivatives are similar, except we can no longer use matrices to
represent them.

3. (15pts) By de�nition, the derivative of f : Rn ! R
m at x0 2 R

n is the unique linear function
T : Rn ! R

m such that

lim
x!x0

kf(x)� f(x0)�T(x� x0)k

kx� x0k
= 0:

Of course, we call this function T = Df(x0). I asserted in lecture that T is given by matrix multipli-
cation by the matrix of partial derivatives at x0:

Tv =

2
64

@f1
@x1

(x0) � � � @f1
@xn

(x0)
...

. . .
...

@fm
@x1

(x0) � � � @fm
@xn

(x0)

3
75
2
64v1...
vn

3
75
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Prove this.

(Hint: Show that Tij satis�es

lim
h!0

jfi(x1; : : : ; xj + h; : : : ; xn)� fi(x1; : : : ; xn)� Tijhj

jhj
= 0

which is equivalent to the statement

Tij = lim
h!0

fi(x1; : : : ; xj + h; : : : ; xn)� fi(x1; : : : ; xj ; : : : ; xn)

h
=

@fi
@xj

(x1; : : : ; xn)

where x0 = (x1; : : : ; xn).)

Proof. We can take x! x0 however we like, so �x j and let

x = x0 + hêj

Then
x� x0 = (0; : : : ; 0; h|{z}

jth

; 0; : : : ; 0) = hêj

and
kx� x0k =

p
(h)2 = jhj

Also, we have

T(x� x0) = hT êj = h

2
64T1j

...
Tmj

3
75 :

Now �x i, and note that

kf(x)� f(x0)�T(x� x0)k =�
(f1(x)� f1(x0)� T1jh)

2 + � � �+ (fi(x)� fi(x0)� Tijh)
2 + � � �+ (fm(x)� fm(x0)� Tmjh)

2
�1=2

� jfi(x)� fi(x0)� Tijhj

since all other terms are nonnegative. Thus

lim
h!0

jfi(x1; : : : ; xj + h; : : : ; xn)� fi(x1; : : : ; xn)� Tijhj

jhj
� lim

h!0

kf(x)� f(x0)�T(x� x0)k

kx� x0k
= 0:

But this is equivalent to saying that Tij satis�es the de�nition of the partial derivative (you didn't
have to show this part), since

lim
h!0

jfi(x1; : : : ; xj + h; : : : ; xn)� fi(x1; : : : ; xn)� Tijhj

jhj
= 0

() lim
h!0

fi(x1; : : : ; xj + h; : : : ; xn)� fi(x1; : : : ; xn)� Tijh

h
= 0

() lim
h!0

Tijh

h
= Tij = lim

h!0

fi(x1; : : : ; xj + h; : : : ; xn)� fi(x1; : : : ; xn)

h
=

@fi
@xj

(x1; : : : ; xn)
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