
Math 350 Problem Set 7 Solutions

Part I

1. (10pts) Scaling property of multiple integrals. Let D � R
3 be a nice 3-dimensional region, with

volume

Vol(D) =

ZZZ
D

dV:

Let Da be the region obtained by scaling (multiplying) all lengths in D by a factor a � 0:

Da = fax j x 2 Dg :

Use the change of variables theorem to prove that

Vol(Da) = a3Vol(D):

(Though we haven't discussed the general change of variables theorem for n-dimensional integrals
except for n 2 f1; 2; 3g, the same argument shows that if D 2 Rn, then the n-volume of Da is an times
the n-volume of D.)

Solution. Here's the proof for general n. Let u(u1; : : : ; un) = ax = (ax1; : : : ; axn), so u 2 Da ()
x 2 D by de�nition of Da. Then

����@x@u
���� =

�������
@x1
@u1

� � � @x1
@un

...
. . .

...
@xn
@u1

� � � @xn
@un

������� =
���������

a 0 � � � 0
0 a � � � 0
...

. . .
...

0 0 � � � a

���������
= janj = an:

So

Vol(Da) =

Z
� � �
Z
Da

du =

Z
� � �
Z
D

����@(u)@(x)

���� dx = an
Z
� � �
Z
D

dx = anVol(D):

2. (10pts) 4-volume of a 4-ball. The 4-volume of a region D 2 R4 is given by the integral

Vol4(D) =

ZZZZ
D

1 dV =

ZZZZ
D

1 dx dy dz dw

The 3-sphere of radius a is the set of points of distance a from the origin in R4:

S3
a =

n
v = (x; y; z; w) 2 R4 j kvk =

p
x2 + y2 + z2 + w2 = a

o
:

It's interior is called the 4-ball (of radius a), and consists of the set

B4
a =

n
v = (x; y; z; w) 2 R4 j kvk =

p
x2 + y2 + z2 + w2 � a

o
:

Compute Vol4(B
4
a) by setting up an iterated integral.

(Hint: Use w for your inner integral, and note that the projection (shadow region) of B4
a onto the

(x; y; z) space is equal B3
a, the interior of the usual sphere of radius a. Spherical coordinates therefore

might be useful for the rest of the integral. Also possibly useful will be the trig identity

cos2 t sin2 t =
1� cos 4t

8
:
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Solution. We can compute Vol4(B
4
a) by the integral

ZZZZ
B4
a

dV4 =

ZZZ
B3
a

Z pa2�x2�y2�z2

�

p
a2�x2�y2�z2

dw dV

= 2

ZZZ
B3
a

Z pa2��2

0

dw �2 sin�d� d� d�

= 2

Z 2�

0

Z �

0

Z a

0

Z pa2��2

0

dw �2 sin�d� d� d�

= 4�

Z �

0

sin�d�

Z a

0

�2
p
a2 � �2 d�

= 8�

Z �=2

0

a2 sin2 t
p
a2 � a2 sin2 t d(a sin t)

= 8�

Z �=2

0

a4 sin2 t cos2 t dt

=
�2

2
a4:

3. (15pts) n-volume of an n-ball. Continuing in the above manner gets hard quickly, at least without
some kind of appropriate spherical coordinates for all n. However, there is a neat trick to obtain a
formula for Voln(B

n
a ) for any n. Here are some steps:

(a) Argue (using an n dimensional analogue of problem 1, for instance), that

Voln(B
n
a ) = Cna

n

for some constant Cn, which is therefore all we need to �nd.

(b) Write down an equation which computes Voln(B
n
a ) as a single integral, where the integrand

consists of the (n � 1)-volumes of (n � 1)-balls of appropriate radii. Show that this gives a
recursive formula for Cn in terms of Cn�1, but the integral is quite di�cult to evaluate in general;
you need not evaluate it.

(c) Do the recursion one more time, giving Cn in terms of Cn�2 and an appropriate double integral.
Note that this integral is easy to evaluate (hint: polar coordinates!). Evaluate it.

(d) Using values of Cn for small n that you know, write down the formula for Voln(B
n
a ) for n up to

n = 10. Impress your friends with this list.

(Note: it is similarly straightforward to �nd a 2-step recursive formula for the n-volume of the n-spheres
Sna . You might also do this for fun, but it is not required.)

Solution. Let
Vn(a) = Voln(B

n
a ):

It follows from problem 1 that
Vn(a) = Cna

n (1)

for some constant Cn which depends only on n. We can write Vn(a) as an integral over one of the
cartesian variables, say xn, obtaining

Vn(a) =

Z a

�a

Vn�1

�p
a2 � x2n

�
dxn; (2)
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since the intersection of Bn
a with the plane xn = c is the (n�1) ball

�
x21 + x22 + � � �+ x2n�1 � a2 � c2

	
.

Plugging in (1) into (2), we obtain

Cna
n =

Z a

�a

Cn�1

�
a2 � x2n

�(n�1)=2
dxn;

which computes Cn in terms of Cn�1 in principle, but the integral is di�cult to compute. However,
using the recursion one additional time (that is to say, plugging (2) into itself), we get

Vn(a) = Cna
n =

Z a

�a

Z pa2�x2
n

�

p
a2�x2

n

Vn�2

 r�p
a2 � x2n

�2
� x2n�1

!
dxn�1 dxn

=

Z a

�a

Z pa2�x2
n

�

p
a2�x2

n

Vn�2

�q
a2 � x2n�1 � x2n

�
dxn�1 dxn

=

Z a

�a

Z pa2�x2
n

�

p
a2�x2

n

Cn�2

�
a2 � x2n�1 � x2n

�(n�2)=2
dxn�1 dxn:

This is just an integral over a disk of radius a in the xn�1; xn plane, which we can evaluate using polar
coordinates (r; �) in this plane:

Cna
n =

Z 2�

0

Z a

0

Cn�2

�
a2 � r2

�(n�2)=2
r dr d� = 2�Cn�2

�
� 2

n

1

2

�
a2 � r2

�n=2�a
r=0

=
2�

n
Cn�2a

n:

We cancel the an to get

Cn =
2�

n
Cn�2:

Using C0 = 1 and C1 = 2, we obtain

n Cn Vn(a)

0 1 1

1 2 2a

2 � �a2

3 4�
3

4�
3 a

3

4 �2

2
�2

2 a
4

5 8�2

15
8�2

15 a
5

6 �3

6
�3

6 a
6

7 16�3

105
16�3

105 a
7

8 �4

24
�4

24 a
8

9 32�4

945
32�4

945 a
9

10 �5

120
�5

120a
10

2n �n

n!
�n

n! a
2n

2n+ 1 2n+1�n

(2n+1)!!
2n+1�n

(2n+1)!!a
2n+1

emplying the double factorial, (2n+ 1)!! = (2n+ 1)(2n� 1) � � � 5 � 3 � 1.
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