Math 350 Problem Set 9 Solutions

Part 1

1. (5pts) Prove that the curl of a gradient is always zero, and that the divergence of a curl is always zero
(assuming f or F are C*? functions):

Vx(Vf)=0, and V-(VxF)=0 for all f and F.

The divergence of a gradient is not necessarily zero, however. The Laplacian is defined to be the
operator A which takes a scalar function to a scalar function by the formula

Af =V (V).

Write down the expression for Af in 1, 2 and 3 dimensions.

Solution. For the curl of a gradient, we have
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by symmetry of mixed partial derivatives.

Similarly, if F= Fli + sz + ng, we have
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since partial derivatives are symmetric and each term appears twice, with opposite signs.

For the Laplacian, we compute
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In 1 and two dimensions we have
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Af:ﬁf(:r), and Af:@+87y2

respectively.

2. (10pts) Let f: R C R? — R be a scalar function. Use Green’s Theorem to prove the formula
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Solution. Define a vector field by

Plo,y) = 1(0.0)Vf(e.0) = £l i+ 1505

We use the flux form of Green’s Theorem, which says
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To compute V - F, we have
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from which the result follows.

. (15pts) Laplace’s Equation is the (partial differential) equation Au = 0, for a scalar function u(z,y).
Functions v which satisfy Laplace’s equation (called harmonic functions) are deeply important in
mathematics and physics. A typical problem that arises is to find a function u such that Au = 0 on
the interior of a region R C R?, and such that u is equal to some fixed function at the boundary of R,
i.e. that u(x,y) = g(x,y) for all (x,y) € OR. Such a u is said to be a solution of the boundary value
problem
Au(z,y) =0 (z,y) €R (1)
u(z,y) = g(z,y) (z,y) €OR
and g is called the boundary value.

This is a physical model for the following situation. Take the curve in R? given by the graph of g over
OR; that is, the set {(z,y, g(z,y)) € R*| (z,y) € OR}. Picture this curve in space as a rigid wire, and
then dip this wire into a solution of soap and water, or imagine attaching a rubber sheet to it. The
soap film or rubber sheet, stretched out in the space inside the wire ring, defines a surface which is a
solution to (1).

For mathematical purposes, it is nice to know two things about such differential equation problems:
A) that solutions ezist (i.e. given a g, that at least one function u exists which solves (1), and B) that
solutions are unique (so that there is only one solution for each choice of g). These questions can be
very difficult to answer for general partial differential equations — in fact, much ongoing mathematical
research today is concerned with such questions.

For Laplace’s equation (1) however, we can prove uniqueness using the formula from problem 2. (Ex-
istence is harder, and somewhat beyond the scope of this class.)

(a) Suppose g is fixed, and uy, us are two solutions to (1). Show that u; —us is a solution to Laplace’s
Equation, but with a different boundary value. What is the boundary value of u; — us?

(b) Set f = wu; — usz. Use the formula from problem 2 to show that

//RVf-VfdA://RHVﬂF dA =0.

(You will need to use the fact that f is harmonic, as well as the particular boundary value of f.)



(¢) Conclude that we must have
Vf=0.
(Remember that we showed a while back that if [[, hdA = 0 for a nonnegative, continuous
function h, then h = 0).
(d) Thus f = u; — us must be a constant in R. Argue that this constant must be 0 because of the

boundary value of f. Therefore,
Up = U

and we have proved that solutions to (1) are in fact unique.

Solution. Inside R, we have
A(ul(qjay) - Uz(ﬂ?,y)) = Aul(may) - Auz(m,y) =0-0=0 (iL',y) ER
since u; and us are solutions. On R, we have
uy(z,y) —uz(z,y) = g(z,y) —g(z,y) =0 (x,y) € OR.
Hence u; — us solves Laplace’s Equation with boundary value 0. From problem 2,
// fAf-I—Vf-VfdA—j{ fVf-nds =0,
R OR
but since Af =0in R and f = 0 on JR, this equals
0+// Vf-VfdA-0=0.
R

Since ||V f||> = Vf - V[ is a nonnegative, continuous function, we must have
2
IVAI"=0 = Vf=0,
and therefore f = u; — us is a constant function. Since f = 0 on OR, this constant must be 0. Thus

U = U in R.

Part 11
1. Let F(z,y) = yi — zj, and suppose C is a circle of radius 1 with center at (1,0), oriented clockwise.
Compute
I= % F-Tds
c
two ways:

(a) (5pts) Directly.
Solution. Note that C has the opposite orientation from the usual one. We can either parametrize
by
(z(t),y(t)) = (cost + 1, —sint), 0<t<27w

or by
(z(t),y(t)) = (cost + 1,sint) 0<t <27

as long as we introduce a minus sign to compensate for the orientation. Using the first
parametrization, we have
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(b) (5pts) Using Green’s Theorem.
Solution. Let R be the disk {(z — 1)? + y? < 1}. By the orientation convention, we have

OR=-C

since the boundary of R must be oriented so that R is on the left. Thus

%F-Tds:—//VdeA.
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We compute

Since this is a constant, we have

—//VXFdA:Q// dA = 2Area(R) = 2.
R R

2. Let F(z,y) = zy*i + zyj, and suppose C consists of the straight line segements from (0, 0) to (1,0) to
(0,1) and back to (0,0), oriented counterclockwise. Compute
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two ways:

(a) (5pts) Directly.
Solution. Note that F(z,y) vanishes on the line segments from (0,0) to (1,0) and (0, 1) to (0,0).

Thus
%Fmﬁds:/ F . nds
C Ca

where Cs is the segment from (1,0) to (0,1). We can parametrize Cy by
(z,y) =(-t,1+t), —-1<t<0
(or some other choice, as long as the orientation is taken into account). Along C then,
nds =dyi—dxj= (i+]j)dt
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(b) (5pts) Using Green’s Theorem.
Solution. We use the flux form of Green’s Theorem, so

fF-ﬁds://V-FdA
c R

where R is the triangle with vertices (0,0), (1,0) and (0,1). We compute
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3. (10pts) Find the closed curve C in R? which mazimizes the line integral

7{(962 —2)ydx — (y* — 2)z dy.
c

That is, find the curve over which this integral has the largest possible value.
(Hint: Green’s Theorem.)

Note: as stated, this problem is ill-posed, which I have just realized in the course of
typing the solutions. By taking clockwise oriented curves which enclose larger and larger
areas, we can make the integral arbitrarily large and positive. To fix this, we should ask
for the counterclockwise oriented closed curve which maximizes the above integral.

Solution. Maximizing over all possible curves is hard. The problem becomes easier when we use Green’s
Theorem. For an arbitrary (counterclockwise oriented) closed curve C
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where R is a region such that OR = C.
The problem is now to find the region R such that the integral

//4—x2—y2dA
R

is as large as possible. This happens when R consists of the set where the integrand is non-negative,
namely R = {a:2 +y? < 4}, the circle of radius 2 centered at the origin. Thus the answer to the original

question is
C = OR = circle of radius 2 centered at (0,0), oriented CCW.



