
Math 350 Problem Set 9 Solutions

Part I

1. (5pts) Prove that the curl of a gradient is always zero, and that the divergence of a curl is always zero
(assuming f or F are C2 functions):

r� (rf) = 0; and r � (r� F) = 0 for all f and F.

The divergence of a gradient is not necessarily zero, however. The Laplacian is de�ned to be the
operator � which takes a scalar function to a scalar function by the formula

�f = r � (rf):

Write down the expression for �f in 1, 2 and 3 dimensions.

Solution. For the curl of a gradient, we have

r� (rf) = det
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by symmetry of mixed partial derivatives.

Similarly, if F = F1i+ F2j+ F3k, we have
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and so
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since partial derivatives are symmetric and each term appears twice, with opposite signs.

For the Laplacian, we compute

�f = r � (rf) =
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In 1 and two dimensions we have

�f =
d2

dx2
f(x); and �f =
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respectively.

2. (10pts) Let f : R � R2 ! R be a scalar function. Use Green's Theorem to prove the formulaZZ
R

f�f +rf � rf dA =

I
@R

frf � n̂ ds
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Solution. De�ne a vector �eld by

F(x; y) = f(x; y)rf(x; y) = f
@f
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We use the ux form of Green's Theorem, which saysI
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r � F dA:

To compute r � F, we have
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= f�f +rf � rf;

from which the result follows.

3. (15pts) Laplace's Equation is the (partial di�erential) equation �u = 0, for a scalar function u(x; y).
Functions u which satisfy Laplace's equation (called harmonic functions) are deeply important in
mathematics and physics. A typical problem that arises is to �nd a function u such that �u = 0 on
the interior of a region R � R2, and such that u is equal to some �xed function at the boundary of R,
i.e. that u(x; y) = g(x; y) for all (x; y) 2 @R. Such a u is said to be a solution of the boundary value

problem (
�u(x; y) = 0 (x; y) 2 R

u(x; y) = g(x; y) (x; y) 2 @R
(1)

and g is called the boundary value.

This is a physical model for the following situation. Take the curve in R3 given by the graph of g over
@R; that is, the set

�
(x; y; g(x; y)) 2 R3 j (x; y) 2 @R

	
. Picture this curve in space as a rigid wire, and

then dip this wire into a solution of soap and water, or imagine attaching a rubber sheet to it. The
soap �lm or rubber sheet, stretched out in the space inside the wire ring, de�nes a surface which is a
solution to (1).

For mathematical purposes, it is nice to know two things about such di�erential equation problems:
A) that solutions exist (i.e. given a g, that at least one function u exists which solves (1), and B) that
solutions are unique (so that there is only one solution for each choice of g). These questions can be
very di�cult to answer for general partial di�erential equations { in fact, much ongoing mathematical
research today is concerned with such questions.

For Laplace's equation (1) however, we can prove uniqueness using the formula from problem 2. (Ex-
istence is harder, and somewhat beyond the scope of this class.)

(a) Suppose g is �xed, and u1, u2 are two solutions to (1). Show that u1�u2 is a solution to Laplace's
Equation, but with a di�erent boundary value. What is the boundary value of u1 � u2?

(b) Set f = u1 � u2. Use the formula from problem 2 to show thatZZ
R

rf � rf dA =

ZZ
R

krfk
2
dA = 0:

(You will need to use the fact that f is harmonic, as well as the particular boundary value of f .)
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(c) Conclude that we must have
rf = 0:

(Remember that we showed a while back that if
RR

R
h dA = 0 for a nonnegative, continuous

function h, then h = 0).

(d) Thus f = u1 � u2 must be a constant in R. Argue that this constant must be 0 because of the
boundary value of f . Therefore,

u1 = u2

and we have proved that solutions to (1) are in fact unique.

Solution. Inside R, we have

�(u1(x; y)� u2(x; y)) = �u1(x; y)��u2(x; y) = 0� 0 = 0 (x; y) 2 R

since u1 and u2 are solutions. On @R, we have

u1(x; y)� u2(x; y) = g(x; y)� g(x; y) = 0 (x; y) 2 @R:

Hence u1 � u2 solves Laplace's Equation with boundary value 0. From problem 2,ZZ
R

f�f +rf � rf dA�

I
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frf � n̂ ds = 0;

but since �f = 0 in R and f = 0 on @R, this equals

0 +

ZZ
R

rf � rf dA� 0 = 0:

Since krfk
2
= rf � rf is a nonnegative, continuous function, we must have

krfk
2
= 0 =) rf = 0;

and therefore f = u1 � u2 is a constant function. Since f = 0 on @R, this constant must be 0. Thus

u1 = u2 in R.

Part II

1. Let F(x; y) = yi � xj, and suppose C is a circle of radius 1 with center at (1; 0), oriented clockwise.
Compute

I =

I
C

F �T ds

two ways:

(a) (5pts) Directly.

Solution. Note that C has the opposite orientation from the usual one. We can either parametrize
by

(x(t); y(t)) = (cos t+ 1;� sin t); 0 � t � 2�

or by
(x(t); y(t)) = (cos t+ 1; sin t) 0 � t � 2�

as long as we introduce a minus sign to compensate for the orientation. Using the �rst
parametrization, we haveI

C

F � bvT ds =
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(� sin ti� (cos t+ 1)j) � (� sin ti� cos tj) dt

=

Z
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0

sin2 t+ cos2 t+ cos t dt

=

Z
2�

0

1 + cos t dt = 2�:
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(b) (5pts) Using Green's Theorem.

Solution. Let R be the disk
�
(x� 1)2 + y2 � 1

	
. By the orientation convention, we have

@R = �C

since the boundary of @R must be oriented so that R is on the left. ThusI
C

F �T ds = �
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r� F dA:

We compute
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Since this is a constant, we have
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2. Let F(x; y) = xy2i+ xyj, and suppose C consists of the straight line segements from (0; 0) to (1; 0) to
(0; 1) and back to (0; 0), oriented counterclockwise. Compute

I =

I
C

F � n̂ ds

two ways:

(a) (5pts) Directly.

Solution. Note that F(x; y) vanishes on the line segments from (0; 0) to (1; 0) and (0; 1) to (0; 0).
Thus I

C

F � n̂ ds =

Z
C2

F � n̂ ds

where C2 is the segment from (1; 0) to (0; 1). We can parametrize C2 by

(x; y) = (�t; 1 + t); �1 � t � 0

(or some other choice, as long as the orientation is taken into account). Along C2 then,
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(b) (5pts) Using Green's Theorem.

Solution. We use the ux form of Green's Theorem, soI
C
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where R is the triangle with vertices (0; 0), (1; 0) and (0; 1). We compute
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3. (10pts) Find the closed curve C in R2 which maximizes the line integralI
C

(x2 � 2)y dx� (y2 � 2)x dy:

That is, �nd the curve over which this integral has the largest possible value.

(Hint: Green's Theorem.)

Note: as stated, this problem is ill-posed, which I have just realized in the course of

typing the solutions. By taking clockwise oriented curves which enclose larger and larger

areas, we can make the integral arbitrarily large and positive. To �x this, we should ask

for the counterclockwise oriented closed curve which maximizes the above integral.

Solution. Maximizing over all possible curves is hard. The problem becomes easier when we use Green's
Theorem. For an arbitrary (counterclockwise oriented) closed curve CI

C

(x2 � 2)y dx� (y2 � 2)x dy =
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�
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�
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4� x2 � y2 dA

where R is a region such that @R = C.

The problem is now to �nd the region R such that the integralZZ
R

4� x2 � y2 dA

is as large as possible. This happens when R consists of the set where the integrand is non-negative,
namely R =

�
x2 + y2 � 4

	
, the circle of radius 2 centered at the origin. Thus the answer to the original

question is
C = @R = circle of radius 2 centered at (0; 0), oriented CCW.
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