MATH 540 EXAM 2 PRACTICE PROBLEMS

1. Theoretical exercises

Problem 1. Prove that if A is normal, then so are A^{T}, A^{n} for any n. Are the converses true? Can you find matrices such that A^{T} is normal but A is not, or such that A^{2} is normal but A is not?

Problem 2. Prove that if T is unitary and self-adjoint, then the only eigenvalues of T can be ± 1. Do not assume the spectral theorem. Use the defining properties of unitarity and self-adjointness, along with properties of the determinant.

Problem 3. Suppose P is self-adjoint, and all of its eigenvalues are either 0 or 1 . Show P is a projection, which is the identity if 0 is not an eigenvalue.

Problem 4. Let P be orthogonal projection onto a subspace E, and let Q be the projection onto E^{\perp}. Simplify the operator

$$
9 P^{83}+3 P^{12}+13 Q^{12}-Q
$$

Problem 5. A linear transformation $A: V \longrightarrow W$ is called injective if no two vectors can go to the same point; i.e. $A x_{1}=A x_{2} \Longleftrightarrow x_{1}=x_{2}$. A is called surjective if every vector in W is in the image of A : i.e. $\operatorname{Ran} A=W$. Prove that

$$
A \text { is injective } \Longleftrightarrow A^{*} \text { is surjective. }
$$

Problem 6. Use the trace to show that there cannot exist transformations T, S such that $T S-S T=I$. (Hint: think about eigenvalues).

Problem 7. Prove the following statements or find a counterexample:
(1) If \mathbf{v} is an eigenvector of A then \mathbf{v} is an eigenvector of A^{n} for any n.
(2) If \mathbf{v} is an eigenvector of A, then $\overline{\mathbf{v}}$ is an eigenvector of A^{*}.
(3) If \mathbf{v} is an eigenvector of A, then $\overline{\mathbf{v}}$ is an eigenvector of \bar{A}.

Problem 8. Suppose $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ are the eigenvalues of an operator A. Let $\alpha \in \mathbb{C}$. What are the eigenvalues of $A+\alpha I$?

Problem 9. Let $M_{2 \times 2}$ be the space of 2×2 real matrices. For any $A \in M_{2 \times 2}$, let $T_{A}: M_{2 \times 2} \longrightarrow M_{2 \times 2}$ be the operator given by

$$
T_{A} X=A X
$$

(1) Let U be an invertible matrix. Show that if $X \in M_{2 \times 2}$ is an eigenvector of T_{A}, then $U X$ is an eigenvector of $T_{U A U^{-1}}$ with the same eigenvalue.
(2) Show that the eigenvalues of $T_{A}: M_{2 \times 2} \longrightarrow M_{2 \times 2}$ coincide with those of $A: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$. What happens to the multiplicities? (Hints: show it directly, or use the first part of the problem to reduce to the case that A is upper triangular.)

2. Computational exercises

Problem 10. Orthogonally diagonalize the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

That is, find matrices P and D such that P is orthogonal (so $P^{-1}=P^{\mathrm{T}}$), D is diagonal, and $A=P D P^{\mathrm{T}}$.
Problem 11. Find the best fit linear curve $y=a x+b$ for the data points $\left(x_{n}, y_{n}\right) \in$ $\{(1,1),(-2,1),(3,4),(2,3)\}$.
Problem 12. Compute the following determinants:

$$
\left|\begin{array}{llll}
0 & 0 & 0 & 1 \tag{1}\\
0 & 0 & 2 & 0 \\
0 & 3 & 0 & 0 \\
4 & 0 & 0 & 0
\end{array}\right|
$$

$$
\left|\begin{array}{cccc}
2 & 4 & 9 & 6 \tag{2}\\
0 & 2 & 4 & 1 \\
1 & 2 & 3 & 2 \\
0 & -2 & -4 & 1
\end{array}\right|
$$

Problem 13. Diagonalize the matrix

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
2 & 2
\end{array}\right)
$$

and find all possible square roots; i.e. complex 2×2 matrices B such that $B^{2}=A$.
Problem 14. Compute the projections onto the four fundamental subspaces Ran A, $\operatorname{Ker} A, \operatorname{Ran} A^{*}$, and $\operatorname{Ker} A^{*}$, where

$$
A=\left(\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 0 \\
3 & 0 & 6
\end{array}\right)
$$

Problem 15. Which of the following pairs of matrices are similar? Which are unitarily equivalent?
(1) $\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right)$ and $\left(\begin{array}{ll}0 & 2 \\ 2 & 3\end{array}\right)$
(2) $\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
(3) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & i\end{array}\right)$ and $\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right)$

