
MATH 540 EXAM 2 PRACTICE PROBLEM SOLUTIONS

Note: These are not guaranteed to be free of mistakes!

1. Theoretical exercises

Problem 1. Prove that if A is normal, then so are AT, An for any n. Are the
converses true? Can you find matrices such that AT is normal but A is not, or such
that A2 is normal but A is not?

Solution. If A is normal, then

AT (A∗)T = (A∗A)
T

= (AA∗)
T

= (A∗)TAT

proving the first claim.
For the second, proceed by induction. The case n = 1 is true by assumption.

Then

An (A∗)
n

= An−1AA∗ (A∗)
n−1

= An−1A∗A (A∗)
n−1

= A∗An−1 (A∗)
n−1

A

= A∗ (A∗)
n−1

An−1A

= (A∗)
n
An

where on the third line we use normality iteratively 2n times to move the A∗ to the
beginning and the A to the end, and where we use the inductive hypothesis on the
fourth line.

Since
(
AT
)T

= A, A is normal if and only if AT is normal. On the other hand,

A =

(
1 1
0 −1

)
.

is not normal, but A2 = I which is normal. �

Problem 2. Prove that if T is unitary and self-adjoint, then the only eigenvalues
of T can be ±1. Do not assume the spectral theorem. Use the defining properties
of unitarity and self-adjointness, along with properties of the determinant.

Solution. If T is unitary and self adjoint, then T 2 = T ∗T = I. If Tx = λx, then

λ2x = T 2x = x =⇒ λ2 = 1,

thus λ = ±1. (In fact, we didn’t even need to use the determinant.) �

Problem 3. Suppose P is self-adjoint, and all of its eigenvalues are either 0 or 1.
Show P is a projection, which is the identity if 0 is not an eigenvalue.

Solution. Let k be the multiplicity of the eigenvalue 1. By the spectral theorem,
there is an orthonormal basis {u1, . . . ,un} in which P has the block form

P =

(
Ik×k 0

0 0

)
1
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which is evidently a projection onto E = span {u1, . . . ,uk}. Equivalantly, there is
a unitary transformation U such that

P = UDU∗

where D = diag {1, . . . , 1, 0, . . . , 0} is diagonal, and the columns of U are the vectors
{u1, . . . ,un}. �

Problem 4. Let P be orthogonal projection onto a subspace E, and let Q be the
projection onto E⊥. Simplify the operator

9P 83 + 3P 12 + 13Q12 −Q

Solution. Since P 2 = P , therefore Pn = P for all n ≥ 1. Also, Q = I − P , so we
have

9P 83 + 3P 12 + 13Q12 −Q = 9P + 3P + 13Q−Q
= 12P + 12Q

= 12P + 12(I − P )

= 12I.

�

Problem 5. A linear transformation A : V −→ W is called injective if no two
vectors can go to the same point; i.e. Ax1 = Ax2 ⇐⇒ x1 = x2. A is called
surjective if every vector in W is in the image of A: i.e. RanA = W . Prove that

A is injective ⇐⇒ A∗ is surjective.

Solution. Injectivity is equivalent to the condition that Ax = 0 =⇒ x = 0 using
Ax1 = Ax2 ⇐⇒ A(x1 − x2) = 0 and x1 = x2 ⇐⇒ x1 − x2 = 0. Thus injectivity
is equivalent to the requirement that Ker (A) = {0}.

Thus A is injective if and only if

{0} = KerA = (RanA∗)
⊥ ⇐⇒ RanA = W

i.e. A∗ is surjective. �

Problem 6. Use the trace to show that there cannot exist transformations T, S
such that TS − ST = I. (Hint: think about eigenvalues).

Solution. OK, I guess eigenvalues actually have little to do with it. Anyway, recall
that trace (TS) = traceST . Thus

trace (TS − ST ) = trace (TS)− trace (ST ) = 0

while traceI = n 6= 0. Thus no such S, T can exist. �

Problem 7. Prove the following statements or find a counterexample:

(1) If v is an eigenvector of A then v is an eigenvector of An for any n.
(2) If v is an eigenvector of A, then v is an eigenvector of A∗.
(3) If v is an eigenvector of A, then v is an eigenvector of A.

Solution. (1) is true since

Av = λv =⇒ Anv = λnv.

so v is an eigenvector of An with eigenvalue λn.
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(3) is true by complex conjugation:

Av = λv =⇒ Av = λv

so v is an eigenvector of A with eigenvalue λ.
On the other hand, (2) is false in general. One way to construct a counterexample

is to use the spectral theorem. We may have A∗ = A, for instance, which will be
a counterexample provided there is an eigenvector v of A such that v is not an
eigenvector of A.

Thus we can take A = UDU∗, where U is a unitary matrix such that the complex
conjugate of at least one of its columns does not appear among the others, say

U =
1√
2

(
1 i
1 1

)
to pick a (random) example. Letting D = diag {1, 2}, for instance, we get

A =
1

2

(
3 2− i

2 + i 3

)
which has (if computations were done correctly) an eigenvector

v =

(
1
i

)
such that

v =

(
1
−i

)
is not an eigenvector of A∗ = A. �

Problem 8. Suppose {λ1, . . . , λn} are the eigenvalues of an operator A. Let α ∈ C.
What are the eigenvalues of A+ αI?

Solution. From the characterization of eigenvalues as roots of the characteristic
polynomial, we have

pA+αI(λ) = det ((A+ αI)− λI) = det (A− (λ− α)I) = pA(λ− α).

Equivalently, pA+αI(λ+ α) = pA(λ) so {λ1 + α, . . . , λn + α} are the eigenvalues of
A+ αI. �

Problem 9. Let M2×2 be the space of 2× 2 real matrices. For any A ∈M2×2, let
TA : M2×2 −→M2×2 be the operator given by

TAX = AX

(1) Let U be an invertible matrix. Show that if X ∈M2×2 is an eigenvector of
TA, then UX is an eigenvector of TUAU−1 with the same eigenvalue.

(2) Show that the eigenvalues of TA : M2×2 −→ M2×2 coincide with those
of A : R2 −→ R2. What happens to the multiplicities? (Hints: show it
directly, or use the first part of the problem to reduce to the case that A is
upper triangular.)

Solution. For part (1), suppose TAX = λX. Then

TUAU−1UX = UAU−1UX = UAX = UλX = λUX

so UX is an eigenvector of TUAU−1 with eigenvalue λ.
For part (2), here is a direct proof. Suppose λ is an eigenvalue of TA, so TAX =

λX for some X. Then AX = λX which says that λ is an eigenvalue of A, and the
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columns of X are eigenvectors. On the other hand, if Av = λv, then the matrix X
both of whose columns are v is an eigenvector of TA with eigenvalue λ.

Alternatively, it can be shown directly. The computation is made easier by using
a Schur decomposition A = UBU∗ for A, with upper triangular matrix

B =

(
a b
0 c

)
so A has eigenvalues a, c ∈ C. As computed on the previous exam, using the obvious
basis for 2× 2 matrices, TB is represented by the 4× 4 matrix

TB =


a 0 b 0
0 a 0 b
0 0 c 0
0 0 0 c


which is also upper triangular, and therefore has eigenvalues a, c ∈ C but with
multiplicity 2. By part (1), TB has the same eigenvalues as TUBU−1 .

Thus TA has the same eigenvalues as A, but with double the multiplicity. �

2. Computational exercises

Problem 10. Orthogonally diagonalize the matrix

A =

(
cos θ sin θ
sin θ − cos θ

)
That is, find matrices Pand D such that P is orthogonal (so P−1 = PT), D is
diagonal, and A = PDPT.

Solution. A is self-adjoint, hence it has real eigenvalues, so this will be possible.
Indeed,

p(λ) = A− λI = λ2 − 1

so A has eigenvalues {1,−1}. For λ = 1, an obvious eigenvector is(
sin θ

1− cos θ

)
but its norm is

√
2− 2 cos θ, so we take

v1 =
1√

2− 2 cos θ

(
sin θ

1− cos θ

)
which is normalized.

For λ = −1, we can similarly take

v2 =
1√

2 + 2 cos θ

(
− sin θ

1 + cos θ

)
.

Note that v1 ⊥ v2, which is guaranteed since A is self-adjoint and the eigenvalues
are distinct, but this is a good check to make sure we haven’t made mistakes.

In any case, we conclude that A = PDPT, where

P =

(
sin θ√

2−2 cos θ
− sin θ√
2+2 cos θ

1−cos θ√
2−2 cos θ

1+cos θ√
2+2 cos θ

)
and

D =

(
1 0
0 −1

)
. �
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Problem 11. Find the best fit linear curve y = ax+b for the data points (xn, yn) ∈
{(1, 1), (−2, 1), (3, 4), (2, 3)}.

Solution. The corresponding linear problem is Av = w, where

A =


1 1
−2 1
3 1
2 1

 , v =

(
a
b

)
, w =


1
1
4
3


which of course has no solution. The least squares solution is given by the normal
equation

A∗Av = A∗w

where

A∗A =

(
18 4
4 4

)
, A∗w =

(
17
9

)
.

A∗A is invertible, with

(A∗A)
−1

=
1

64

(
4 −4
−4 18

)
and the solution is given by

v =

(
a
b

)
=

(
1/2

47/32

)
. �

Problem 12. Compute the following determinants:

(1) ∣∣∣∣∣∣∣∣
0 0 0 1
0 0 2 0
0 3 0 0
4 0 0 0

∣∣∣∣∣∣∣∣
(2) ∣∣∣∣∣∣∣∣

2 4 9 6
0 2 4 1
1 2 3 2
0 −2 −4 1

∣∣∣∣∣∣∣∣
Solution. For the first matrix,∣∣∣∣∣∣∣∣

0 0 0 1
0 0 2 0
0 3 0 0
4 0 0 0

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
4 0 0 0
0 0 2 0
0 3 0 0
0 0 0 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
4 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

∣∣∣∣∣∣∣∣ = 24.

For the second,∣∣∣∣∣∣∣∣
2 4 9 6
0 2 4 1
1 2 3 2
0 −2 −4 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 2 3 2
0 2 4 1
2 4 9 6
0 −2 −4 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 2 3 2
0 2 4 1
0 0 3 2
0 −2 −4 1

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 2 3 2
0 2 4 1
0 0 3 2
0 0 0 2

∣∣∣∣∣∣∣∣ = −12

where we did the following sequence of moves R1 ↔ R3, R3 7−→ R3 − 2R1, and
R4 7−→ R4 +R2. �
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Problem 13. Diagonalize the matrix

A =

(
−1 2
2 2

)
and find all possible square roots; i.e. complex 2× 2 matrices B such that B2 = A.

Solution. The characteristic polynomial is

p(λ) = λ2 − λ− 6 = (λ+ 2)(λ− 3)

so the eigenvalues are {3,−2}. Corresponding normalized eigenvectors are given by

λ = 3 : v1 =
1√
5

(
1
2

)
, λ = −2 : v2 =

1√
5

(
2
−1

)
.

Thus

A = UDU∗ =
1√
5

(
1 2
2 −1

)(
3 0
0 −2

)
1√
5

(
1 2
2 −1

)
There are four possible square roots, B = USiU

∗, i = 1, 2, 3, 4, where

S1 =

(√
3 0

0
√

2 i

)
, S2 =

(√
3 0

0 −
√

2 i

)
,

S3 =

(
−
√

3 0

0
√

2 i

)
, S4 =

(
−
√

3 0

0 −
√

2 i

)
. �

Problem 14. Compute the projections onto the four fundamental subspaces RanA,
KerA, RanA∗, and KerA∗, where

A =

1 0 2
2 1 0
3 0 6


Solution. Row reduction leads to the echelon form

Ae =

1 0 2
0 1 −2
0 0 0


So the first two columns of A, {v1,v2} =

{
(1, 2, 3)T, (0, 1, 0)T

}
form a basis for

Ran (A), and we can also solve for the kernel, getting

Ker (A) = span {w} , w =

−2
2
1

 .

Projection onto Ker (A) is given by the matrix

PKer(A) =
1

‖w‖2
ww∗ =

1

9

 4 −4 −2
−4 4 2
−2 2 1


Our basis for Ran (A) is not orthogonal, so we need to apply Gram-Schmidt. It

will involve less calculation to take x1 = v2 = (0, 1, 0)T (which is already normal-
ized), since projection onto this subspace is easy. So then

x2 = v1 − (v1,x1)x1 =

1
2
3

− (1 2 3 )

0
1
0

0
1
0

 =

1
2
3

−
0

2
0

 =

1
0
3

 .
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(Note that we would have obtained this directly by taking the second two columns
of A instead of the first two, if we had seen that they were independent and that
the first was a linear combination of them.) In any case, we have

PRan(A) =
1

‖x1‖2
x1x

∗
1 +

1

‖x2‖2
x2x

∗
2 =

1

10

1 0 3
0 10 0
3 0 9

 .

By the fact that Ran (A∗) = (ker (A))
⊥

, we compute

PRan(A∗) = I − PKer(A) =
1

9

5 4 2
4 5 −2
2 −2 8


Similarly,

PKer(A∗) = I − PRan(A) =
1

10

 9 0 −3
0 0 0
−3 0 1

 . �

Problem 15. Which of the following pairs of matrices are similar? Which are
unitarily equivalent?

(1)

(
1 3
4 2

)
and

(
0 2
2 3

)
(2)

(
1 1
0 2

)
and

(
1 0
0 2

)
(3)

1 0 0
0 −i 0
0 0 i

 and

 0 0 1
0 1 0
−1 0 0


Solution. The matrices in (1) cannot be similar since their determinants are dif-
ferent (which means their eigenvalues cannot agree and therefore they cannot be
similar).

In (2), both matrices have the same eigenvalues, namely λ = 1 and λ = 2
which are distinct, and therefore both matrices have a basis of eigenvectors, i.e.
are diagonalizable. Therefore they are similar. On the other hand, they cannot be
unitarily equivalent since the right hand matrix is self adjoint, while the left hand
one is not, and unitary equivalence preserves self-adjointness.

In (3), we compute the eigenvalues of the right hand matrix to be {1, i,−i},
which are also (obviously) the eigenvalues of the left hand matrix. One can either
verify that the eigenvectors of the right matrix are orthogonal, or (which is much
easier) check that it is normal, and hence unitarily diagonalizable. Since it shares
eigenvalues with the left matrix, they must be unitarily equivalent (hence also
similar). �
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