Calculus III: Multivariable Calculus, Fall 2016

• Instructor: Professor Chris Kottke

• Website: http://ckottke.ncf.edu/calc3/ and/or Canvas

• **Office**: HNS 104

Email: ckottke@ncf.eduPhone: 914-487-4516

Office Hours: MF 1:00-2:00, W 11:00-12:00
TA: Conor Welch, conor.welch15@ncf.edu
Lectures: MWF 10:00-10:50, LBR 248
Workshop: W 2:00-3:20, HNS 106

• Textbook: Calculus, by James Stewart, 7th ed.

Course Description: This class is a continuation of Calculus I and II. We will cover the calculus of functions of several variables and vector-valued functions, including maximization/minimization; directional derivatives; gradient, curl and divergence; line, surface and volume integrals; and the classical vector calculus theorems: Green's Theorem, Stokes' Theorem and the Divergence Theorem.

Reading Assignments: A reading assignment for each class will be posted on the course webpage and in the Canvas course prior to each lecture. This reading should be completed *before* the lecture. Unless otherwise specified, you will be responsible for all material in the reading assignment, even if it is not covered in lecture. A provisional lecture schedule appears on the second page.

Homework: Homework problems will be assigned after each lecture, but will not be collected. Instead, a selection of these problems will appear on each weekly quiz.

Quizzes: There will be a 20 minute quiz at the beginning of lecture each Friday (excepting the two Exam days below), which will consist of two to four problems selected from the homework problems from the previous three lectures.

Exams: There will be two in-class midterm exams, and a cumulative final. Dates are as follows:

Exam 1: Friday, September 23Exam 2: Friday, November 4

• Final exam: TBD

Assessment: Your course performance (Sat/Unsat) will be evaluated based on quizzes and exams, weighted as below. Class participation and attendance will be reflected in the narrative evaluation.

Quizzes: 20%Exam 1: 20%Exam 2: 20%Final Exam: 40%

Policies: A student claiming a need for special accommodations because of a disability must work with the Counseling and Wellness Center, which will establish the need for specific accommodations and communicate them to the instructor.

No student shall be compelled to attend class or sit for an examination at a day or time when he or she would normally be engaged in a religious observance or on a day or time prohibited by his or her religious belief. Students are expected to notify their instructors if they intend to be

absent for a class	or announced of	examination,	in accordance	with this policy	, prior to the schedu	led
meeting.						

Monday	Wednesday	Friday	
8/22 : 12.1, 12.2: vectors in 3D	8/24 : 12.3, 12.4: Dot, cross products	8/26 : 12.5, 12.6: Lines, planes, surfaces	
8/29 : 13.1: Curves	8/31: 13.2: Derivatives of curves	9/2: 14.1: Multi-variable functions	
9/5: Labor Day	9/7 : 14.2, 14.3: Limits and derivatives	9/9 : 14.4: Tangent planes	
9/12: 14.5: Chain rule	9/14 : 14.6: Gradient	9/16 : 14.7: Extrema	
9/19 : 14.7: Extrema cont'd	9/21 : Review	9/23: Exam 1	
9/26 : 15.1: Double integrals	9/28: 15.2: Iterated integrals	9/30: 15.3: Integrals over regions	
10/3: 15.4: Polar coordinates	10/5 : 15.5: Applications	10/7 : 15.7: Triple integrals	
10/17: No class	10/19: 15.8: Cylindrical coordinates	10/21: 15.9: Spherical coordinates	
10/24 : 15.8, 15.9: Special coordinates	10/26 : 16.1: Vector fields	10/28 : 16.2: Line integrals	
10/31 : 16.3: FTCLI	11/2 : Review	11/4: Exam 2	
11/7: 16.4: Green's Theorem	11/9: 16.5: Curl and divergence	11/11: Veteran's Day	
11/14 : 16.6: Surfaces and area	11/16 : 16.6: Surfaces cont'd	11/18: 16.7: Surface Integrals	
11/21: 16.8: Stokes' Theorem	11/23: 16.9: Divergence Theorem	11/25: Thanksgiving break	
11/28: Review	11/30 : Review		