Calc III: Quiz 5 Solutions, Fall 2018

Problem 1. Evaluate the integral [[,(4 —2y)dA, where R = [0,1] x [0, 1].
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Solution.

O

Problem 2. Find the volume under the plane 3z + 2y — 2z = 0 and above the region D
enclosed by the parabolas x = y? and y = 2°.

Solution. The plane may be written as z = f(x,y) = 3x + 2y, which is the integrand for our
double integral. The region D between the parabolas can be written as either a Type I or
Type II region, for instance

D:{(x,y):ogargl, xQSyS\/E}.

The volume is given by the double integral
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Problem 3. Use polar coordinates to compute the integral [ sin(z® +y?) dA, where R is
the region in the first quadrant (x > 0 and y > 0) between the circles centered at the origin
with radii 1 and 3.

Solution. Using r* = x? + 1?2, the integrand becomes sin(r?) in polar coordinates. The region
of integration is a “polar rectangle” given by

R={1<r<3,0<60<7/2}.



We recall that dA = rdr df, so the integral in polar coordinates is
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