
Calc III: Quiz 6 Solutions, Fall 2018

Problem 1. A lamina occupies the part of the disk x2 + y2 ≤ 1 in the first quadrant (where
x ≥ 0 and y ≥ 0). Find its center of mass if the density at any point is equal to its distance
to the x-axis.

Solution. The region is a polar rectangle given by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/2, with density
δ(x, y) = y = r sin θ. Thus the mass of the lamina is
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The center of mass is the point (x, y) where x = 1
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So the center of mass is (3
8
, 3π
16

). �

Problem 2. Find the volume of the solid enclosed by the surface y = x2 and the planes
z = 0 and y + z = 1.

Solution. The limits in z go from 0 to z = 1 − y, over the region in the xy-plane bounded
by y = x2 and y = 1 (which is the intersection of the plane y+ z = 1 with the xy-plane). So
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