Calc III: Quiz 8 Solutions, Fall 2018

Problem 1. For each of the following vector fields, determine whether \mathbf{F} is conservative. If it is, find a function f such that $\nabla f=\mathbf{F}$.
(a) $\mathbf{F}(x, y)=\left(y e^{x}+\sin y\right) \mathbf{i}+\left(e^{x}+x \cos y\right) \mathbf{j}$
(b) $\mathbf{F}(x, y)=\left(x y+y^{2}\right) \mathbf{i}+\left(x^{2}+2 x y\right) \mathbf{j}$.

Solution.
(a) We test $P_{y}-Q_{x}=\left(e^{x}+\cos y\right)-\left(e^{x}+\cos y\right)=0$, so \mathbf{F} is conservative. A potential function f must satisfy the system of equations

$$
\begin{aligned}
& f_{x}=y e^{x}+\sin y \\
& f_{y}=e^{x}+x \cos y .
\end{aligned}
$$

We can integrate the first equation in x to get

$$
f=y e^{x}+x \sin y+c(y)
$$

where $c(y)$ is an unknown function of y. Plugging this into the second equation gives

$$
f_{y}=e^{x}+x \cos y+c^{\prime}(y)=e^{x}+x \cos y
$$

which implies $c^{\prime}(y)=0$ or $c(y)=k$, a constant, which we can take to be 0 . Thus a potential function is given by $f(x, y)=y e^{x}+x \sin y$.
(b) We test $P_{y}-Q_{x}=(x+2 y)-(2 x+x y)=-x \neq 0$, so \mathbf{F} is not conservative.

Problem 2. Find a function f such that $\nabla f=\mathbf{F}$, where

$$
\mathbf{F}(x, y, z)=y z \mathbf{i}+x z \mathbf{j}+(x y+2 z) \mathbf{k}
$$

and use it to evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the line segment from $(1,0,-2)$ to $(4,6,3)$.
Solution. The vector field is given to be conservative, and a potential function f must satisfy

$$
\begin{aligned}
f_{x} & =y z \\
f_{y} & =x z \\
f_{z} & =x y+2 z
\end{aligned}
$$

To solve by the "shuffle method", we integrate the equations in x, y, and z, respectively, giving

$$
\begin{aligned}
& f=x y z+c_{1}(y, z) \\
& f=x y z+c_{2}(x, z) \\
& f=x y z+z^{2}+c_{3}(x, y)
\end{aligned}
$$

from which we see we can take $c_{1}(y, z)=c_{2}(x, z)=z^{2}$ and $c_{3}(x, y)=0$, so $f(x, y, z)=$ $x y z+z^{2}$ is a potential function.
By the Fundamental Theorem for Line Integrals, the line integral is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(4,6,3)-f(1,0,-2)=77
$$

