
Calc III: Workshop 11 Solutions, Fall 2018

Problem 1. The helicoid or “spiral ramp” is a surface parameterized by r(u, v) = 〈u cos v, u sin v, v〉,
say for 0 ≤ v ≤ 2π and 0 ≤ u ≤ 1. See if you can sketch a graph of this surface.

(a) Find the tangent plane to the helicoid at the point (1, 0, 0).
(b) Set up an integral which computes its surface area. (You do not have to evaluate it!)

Solution.

(a) A (not-necessarily unit) normal vector to the helicoid at any point r(u, v) is given by

n = ru × rv = 〈cos v, sin v, 0〉 × 〈−u sin v, u cos v, 1〉 = 〈sin v, − cos v, u〉
At the point (1, 0, 0) = r(1, 0), we have

n = 〈0,−1, 1〉
so the tangent plane is given by the equation

0 = n · 〈x− 1, y − 0, z − 0〉 = −y + z = 0.

(b) The surface area element is

dS = |ru × rv| du dv =
√

sin2 v + cos2 v + u2 du dv =
√

1 + u2 du dv

so the surface area is

Area =

∫∫
S

dS =

∫ 2π

0

∫ 1

0

√
1 + u2 du dv

= 2π

∫ 1

0

√
1 + u2 du

= 2π

∫ π/4

0

√
1 + tan2 ϕ sec2 ϕdϕ

= 2π

∫ π/4

0

sec3 ϕdϕ

= · · · using integration by parts · · ·

= 2π
(

1
2
u
√

1 + u2 + 1
2

ln
∣∣∣u+

√
1 + u2

∣∣∣) ∣∣1
u=0

= π
(√

2 + ln(1 +
√

2)
)
.
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Problem 2. Find the surface area of the part of the plane x+ 2y+ 3z = 1 which lies inside
the cylinder x2 + y2 = 3.

Solution. Solving for z in the equation for the plane, we have z = 1
3
(1−x− 2y). We can use

x and y as parameters, with parameterization

r(x, y) =
〈
x, y, 1

3
(1− x− 2y)

〉
where (x, y) vary in the disk R of radius 3. Then

rx(x, y) =
〈
1, 0,−1

3

〉
, ry(x, y) =

〈
0, 1,−2

3

〉



and

dS = |rx × ry| dx dy =
√

(1
3
)2 + (2

3
)2 + 1 dx dy =

√
14

3
dx dy.

Thus the area is∫∫
S

1 dS =

∫∫
R

√
14

3
dx dy =

√
14

3
Area(R) =

√
14

3
(3π) = π

√
14,

since R is the disk of radius
√

3. �

Problem 3. Find the surface area of the part of the cone z =
√
x2 + y2 between z = 0 and

z = H.

Solution. We can use x and y as paramters, with r(x, y) =
〈
x, y,

√
x2 + y2

〉
and (x, y)

varying in the disk of radius H, or we can use polar/cylindrical coordinates directly, with
parameterization

r(r, θ) = 〈r cos θ, r sin θ, r〉 , 0 ≤ θ ≤ 2π, 0 ≤ r ≤ H,

using the fact that z = r on the cone. Using the latter parameterization, we find

rr(r, θ) = 〈cos θ, sin θ, 1〉 , rθ(r, θ) = 〈−r sin θ, r cos θ, 0〉 , rr × rθ = 〈−r cos θ,−r sin θ, r〉 ,

so

dS = |rr × rθ| dr dθ =
√
r2 cos2 θ + r2 sin2 θ + r2 dr dθ =

√
2 r dr dθ.

The surface area is given by

Area(S) =

∫∫
S

dS =

∫ 2π

0

∫ H

0

√
2 r dr dθ = (

√
2)(2π)(H

2

2
) =
√

2πH2.
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Problem 4. Compute the flux
∫∫

S
F · n dS of the vector field F(x, y, z) = xyi + yzj + zxk,

where S is the part of the paraboloid z = 4 − x2 − y2 lying over the square 0 ≤ x ≤ 1,
0 ≤ y ≤ 1 and has upward orientation.

Solution. Given the limits 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, it is best to parameterize S by x and y
here, so

r(x, y) =
〈
x, y, 4− x2 − y2

〉
, rx(x, y) = 〈1, 0,−2x〉 , ry(x, y) = 〈0, 1,−2y〉 , rx×ry = 〈2x, 2y, 1〉 .

Then

n dS = ±rx × ry dx dy



with the ± sign determined by the orientation. Since we want n to point “upward” and
rx × ry has positive k component, we take the + sign. So∫∫

S

F · n dS =

∫ 1

0

∫ 1

0

〈
xy, y(4− x2 − y2), (4− x2 − y2)x

〉
· 〈2x, 2y, 1〉 dx dy

=

∫ 1

0

∫ 1

0

2x2y + 2y2(4− x2 − y2) + (4− x2 − y2)x dx dy

=

∫ 1

0

∫ 1

0

2x2y + 8y2 − 2y2x2 − 2y4 + 4x− x3 − xy2 dx dy

=

∫ 1

0

2

3
y + 8y2 − 2

3
y2 − 2y4 + 2− 1

4
− y2

2
dy

=
2

6
+

8

3
− 2

9
− 2

5
+ 2− 1

4
− 1

6

=
713

180
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Problem 5. Compute the flux
∫∫

S
F · n dS of the vector field F(x, y, z) = −xi − yj + z3k

where S is the part of the cone z =
√
x2 + y2 between the planes z = 1 and z = 3 with

downward orientation.

Solution. A good choice for parameterization of S is in terms of cylindrical/polar coordinates:

z =
√
x2 + y2 = r, so we can take

r(r, θ) = 〈r cos θ, r sin θ, r〉 , 1 ≤ r ≤ 3, 0 ≤ θ ≤ 2π.

Then

rr = 〈cos θ, sin θ, 1〉 , rθ = 〈−r sin θ, r cos θ, 0〉 , rr × rθ = 〈−r cos θ,−r sin θ, r〉
and since we want the downward orientation we should take −rr × rθ in order to get a
negative k component in our normal vector. Thus

n dS = 〈r cos θ, r sin θ, r〉 dr dθ.
Since

F
(
r(r, θ)

)
= −r cos θ,−r sin θ, r3,

we have ∫∫
S

F · n dS =

∫ 2π

0

∫ 3

1

〈
−r cos θ,−r sin θ, r3

〉
· 〈r cos θ, r sin θ, r〉 dr dθ

=

∫ 2π

0

∫ 3

1

r4 − r2dr dθ

= 2π
(

35

5
− 1

5
− 33

3
+ 1

3

)
=

1192π

15
.
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