Calc III: Workshop 13: Course Review, Fall 2018

Problem 1. Sketch the curve with the vector function

 $\mathbf{r}(t) = t\mathbf{i} + \cos \pi t\mathbf{j} + \sin \pi t\mathbf{k}, \quad t \ge 0$

and find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.

Problem 2. Let C be the curve with equations $x = 2 - t^3$, y = 2t - 1, $z = \ln t$. Find

(a) the point where C intersects the xz-plane, and

(b) parametric equations for the tangent line at (1, 1, 0).

Problem 3. Find the first partial derivatives of $G(x, y, z) = e^{xz} \sin(y/z)$.

Problem 4. Find an equation of (a) the tangent plane and (b) the normal line of the surface

$$z = 3x^2 - y^2 + 2x$$

at the point (1, -2, 1).

Problem 5. Find the directional derivative of $f(x, y, z) = x^2y + x\sqrt{1+z}$ at the point (1, 2, 3) in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

Problem 6. Find the maximum rate of change of $f(x, y) = x^2y + \sqrt{y}$ at the point (2, 1). In which direction does it occur?

Problem 7. Find the local maximum and minimum values and saddle points of the function

$$f(x,y) = 3xy - x^2y - xy^2$$

Problem 8. Use Lagrange multipliers to find the maximum and minimum values of $f(x, y) = x^2y$, subject to the constraint $x^2 + y^2 = 1$.

Problem 9. Calculate the multiple integral $\iint_D \frac{y}{1+x^2} dA$ where D is bounded by $y = \sqrt{x}$, y = 0 and x = 1.

Problem 10. Compute $\iint_D (x^2 + y^2)^{3/2} dA$ where D is the region in the first quadrant bounded by the lines y = 0 and $y = \sqrt{3}x$ and the circle $x^2 + y^2 = 9$.

Problem 11. Compute $\iiint_E xy \, dV$, where

 $E = \{(x, y, z) : 0 \le x \le 3, \ 0 \le y \le x, \ 0 \le z \le x + y\}.$

Problem 12. Compute $\iiint_H z^3 \sqrt{x^2 + y^2 + z^2} dV$, where *H* is the solid hemisphere that lies above the *xy*-plane and has center the origin and radius 1.

Problem 13. Find the volume of the solid under the surface $z = x^2y$ and above the triangle in the *xy*-plane with vertices (1,0), (2,1), and (4,0).

Problem 14. Find the volume of the solid under the paraboloid $z = x^2 + y^2$ and below the half cone $z = \sqrt{x^2 + y^2}$.

Problem 15. Evaluate the integral $\int_C x \, ds$, where C is the arc of the parabola $y = x^2$ from (0,0) to (1,1).

Problem 16. Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = e^z \mathbf{i} + xz\mathbf{j} + (x + y)\mathbf{k}$ and C is given by $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} - t\mathbf{k}$, $0 \le t \le 1$.

Problem 17. Show that $\mathbf{F}(x, y, z) = e^y \mathbf{i} + (xe^y + e^z) \mathbf{j} + ye^z \mathbf{k}$ is conservative and use this fact to evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the line segment from (0, 2, 0) to (4, 0, 3).

Problem 18. Use Green's Theorem to evaluate $\int_C \langle x^2 y, -xy^2 \rangle \cdot d\mathbf{r}$ where C is the triangle with vertices (0,0), (1,0) and (1,3).

Problem 19. Find the surface area of the part of the surface $z = x^2 + 2y$ that lies above the triangle with vertices (0,0), (1,0) and (1,2).

Problem 20. Evaluate the surface/flux integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x, y, z) = \langle x^2, xy, z \rangle$ and S is the part of the parabolid $z = x^2 + y^2$ below the plane z = 1 with upward orientation

Problem 21. Use Stokes' Theorem to evaluate $\iint_S \nabla \times \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x, y, z) = x^2 y z \mathbf{i} + y z^2 \mathbf{j} + z^3 e^{xy} \mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 5$ lying above the plane z = 1, oriented upward.

Problem 22. Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$, and *C* is the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), oriented counterclockwise as viewed from above.

Problem 23. Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x, y, z) = \langle x^3, y^3, z^3 \rangle$ and S is the total boundary surface of the solid inside the cylinder $x^2 + y^2 = 1$ and between the planes z = 0 and z = 2.