
Calc III: Workshop 1 Solutions, Fall 2018

Problem 1. A vector v in R2 lies in the positive quandrant (i.e., where x ≥ 0 and y ≥ 0),
makes an angle of π/3 with the positive x-axis, and satisfies |v| = 4. Write v in component
form.

Solution. We’re given that cos θ = π/3, where θ is the angle off the x-axis. The x component,
v1 of v is then given by v1 = v · i = |v| cos θ = 4(1

2
) = 2. The y-component v2 satisfies

4 = |v| =
√
v21 + v22 =

√
4 + v22

=⇒ v2 =
√

12 = 2
√

3

Thus v =
〈
2, 2
√

3
〉

= 2i + 2
√

3j. �

Problem 2. Find two unit vectors which are orthogonal to the vectors 〈3, 2, 1〉 and 〈−1, 1, 0〉.

Solution. For this we use the cross product: calling the vectors a and b, respectively, we
have

a×b = det

 i j k
3 2 1
−1 1 0

 = i
(
2(0)−1(1)

)
−j
(
3(0)−1(−1)

)
+k
(
3(1)−(−1)2

)
= 〈−1,−1, 5〉 .

This vector is orthogonal to a and b by a property of the cross product, but is not a unit
vector: |a× b| =

√
1 + 1 + 25 =

√
27. The two unit vectors are therefore

± 1√
27
〈−1,−1, 5〉 .

�

Problem 3. Let A, B and C be the vertices of a triangle in R2. Compute the vector−→
AB +

−−→
BC +

−→
CA.

Solution. The sum is the zero vector. To see this, think in terms of displacement vectors.−→
AB is the vector which, when added to the point A, gives the point B, etc. Thus the sum
represents travelling from A, then to B, then to C, and back to A, which is a net displacement
of 0. �

Problem 4. Find all vectors v such that 〈1, 2, 1〉 × v = 〈3, 1,−5〉.

Solution. Let v = 〈v1, v2, v3〉 have variable components. Writing the cross product, we have

〈1, 2, 1〉 × v = det

 i j k
1 2 1
v1 v2 v3

 = 〈2v3 − v2, v1 − v3, v2 − 2v1〉 .

Setting this equal to 〈3, 1,−5〉 gives the equations

2v3 − v2 = 3,

v1 − v3 = 1,

v2 − 2v1 = −5.



The system has a free variable (say v3, but this is not the only choice), in terms of which all
solutions can be written as 〈v1, v2, v3〉 = 〈−1 + v3,−3 + 2v3, v3〉. �

Problem 5. Prove the following for all vectors v, w in R3:

(a) |v ×w|2 + |v ·w|2 = |v|2 |w|2
(b) If v ·w = 0 and v ×w = 0, then either v = 0 or w = 0.

Solution.

(a) Using the fact that the magnitude of v × w is |v| |w| sin θ while v · w = |−→v | |w| cos θ,
where θ is the angle between v and w, we may square and add these to get

|v ×w|2 + |v ·w|2 = |v|2 |w|2 (sin2 θ + cos2 θ) == |v|2 |w|2 .

(b) Using the previous result, if both v ×w = 0 and v ·w = 0, then

|v|2 |w|2 = |v ×w|2 + |v ·w|2 = 0

which implies that either |v| or |w| vanishes; this in turn means that the corresponding
vector is 0.

�

Problem 6. Find the point at which the line through the points P0(3, 2, 0) and P1(2, 3, 5)
intersects the plane x− y + 2z = 9.

Solution. First we need either the vector or parametric equations for the line. We take the
base point to be P0(3, 2, 0) and the direction vector to be

−−→
P0P1 = 〈2− 3, 3− 2, 5− 0〉 = 〈−1, 1, 5〉 ,

which gives the vector equation

〈x, y, z〉 = 〈3, 2, 0〉+ t 〈−1, 1, 5〉 = 〈3− t, 2 + t, 5t〉

or equivalently x = 3− t, y = 2 + t, z = 5t.
We plug the parametric equations for the line into the equation for the plane to get

(3− t)− (2 + t) + 2(5t) = 9.

Solving for t gives t = 1, which we plug back into the equations for the line to get the point
of intersection

(x, y, z) = (2, 3, 5).

�

Problem 7. Determine whether the pairs of lines L1 and L2 are parallel, intersecting, or
skew (neither parallel nor intersecting). If they intersect, find the point of intersection.

(a) L1: x = 3 + 2t, y = 4− t, z = 1 + 3t

L2: x = 1 + 4s, y = 3− 2s, z = 4 + 5s.
(b) L1: x = 5− 12t, y = 3 + 9t, z = 1− 3t

L2: x = 3 + 8s, y = −6s, z = 7 + 2s.



(c) L1:
x−2
1

= y−3
−2 = z−1

−3

L2:
x−3
1

= y+4
3

= z−2
−7

Solution.

(a) To determine whether the lines are parallel, we read off direction vectors and see if these
are parallel. A direction vector for L1 is given by 〈2,−1, 3〉 (the coefficients of t) and a
direction vector for L2 is given by 〈4,−2, 5〉. These are not parallel since

〈2,−1, 3〉 × 〈4,−2, 5〉 = 〈1, 2, 0〉 6= 0.

To find out if they intersect, we derive symmetric equations for one of them (say L2)
and plug in the parametric equations for L1 to try and find a solution in t. Symmetric
equations for L2 are given by

L2 :
x− 1

4
=
y − 3

−2
=
z − 4

5
.

Plugging in the parametric equations for L1 gives equations

(3 + 2t)− 1

4
=

(4− t)− 3

−2
=

(1 + 3t)− 4

5
.

There are two equations and only one unknown, so there may be no solutions (in which
case the lines are skew) or one solution (in which case they intersect). Simplifying the
first equation leads to −2 = 2, so we see that there is no solution and the lines are skew.

Alternatively, you can try to simulaneously solve both sets of parametric equations:

3 + 2t = 1 + 4s, 4− t = 3− 2s, 1 + 3t = 4 + 5s

and after some manipulations, find that there are no solutions.
(b) Direction vectors for L1 and L2 are given by 〈−12, 9,−3〉 and 〈8,−6, 2〉. These are

parallel, which we see either by computing

〈−12, 9,−3〉 × 〈8,−6, 2〉 = 〈0, 0, 0〉
or by noting that 〈−12, 9,−3〉 = −3

2
〈8,−6, 2〉. We conclude that the lines are parallel.

(c) We can read off direction vectors for the two lines from the denominators in the symemtric
equations, so v1 = 〈1,−2,−3〉 and v2 = 〈1, 3,−7〉 are direction vectors for L1 and L2,
respectively. These are not parallel since v1 × v2 6= 0.

To find out if they intersect, we need to transform one (say L1) into parametric form.
(To pass from symmetric form to parametric form, set t equal to all of the expressions
and solve for x, y, and z in terms of t.) We have

L1 : x = 2 + t, y = 3− 2t, z = 1− 3t.

Plugging this into the symmetric equations for L2 gives

(2 + t)− 3

1
=

(3− 2t) + 4

3
=

(1− 3t)− 2

−7

which has the solution t = 2, which gives the intersection point (4,−1,−5).

�


