
Calc III: Workshop 3 Solutions, Fall 2018

Problem 1. Let C be the curve with equations x = 2− t3, y = 2t− 1, and z = ln t. Find

(a) the point where C intersects the xz-plane, and
(b) parametric equations for the tangent line to C at the point (1, 1, 0).

Solution.

(a) C intersects the xz-plane when

0 = y = 2t− 1 =⇒ t = 1
2
.

Plugging this back in gives the point

(x, y, z) = (15
8
, 0, ln 1

2
)

(b) The vector equation for the curve is r(t) = 〈2− t3, 2t− 1, ln t〉. The point in question is
r(1) = (1, 1, 0), corresponding to parameter value t = 1. The derivative is given by

r′(t) =
〈
−2t2, 2, 1

t

〉
,

so at the point (1, 1, 0) we have the tangent vector

r′(1) = 〈−2, 2, 1〉 .
The vector equation for the tangent line is therefore

`(s) = 〈1, 1, 0〉+ s 〈−2, 2, 1〉 = 〈1− 2s, 1 + 2s, s〉 ,
or in parametric form

x(s) = 1− 2s, y(s) = 1 + 2s, z(s) = s.

�

Problem 2. Find a vector function that represents the curve of intersection of the cylinder
x2 + y2 = 16 and the plane x+ z = 5.

Solution. The problem is to find r(t) = 〈x(t), y(t), z(t)〉 which satisfy x(t)2 + y(t)2 = 16 and
x(t) + z(t) = 5. There are multiple possible solutions. We can satisfy the first equation by

x(t) = 4 cos(t) and y(t) = 4 sin(t),

and plugging this into the second equation gives

4 cos(t) + z(t) = 5 =⇒ z(t) = 5− 4 cos(t).

So one solution is given by

r(t) = 〈4 cos(t), 4 sin(t), 5− 4 cos(t)〉 .
�

Problem 3. A thin metal plate, located in the xy-plane, has temperature T (x, y) at the
point (x, y). Sketch some level curves (isothermals) if the temperature function is given by

T (x, y) =
100

1 + x2 + 2y2
.



Solution. The level curves are concentric ellipses:

x

y

50 20 10

�

Problem 4. Describe the level surfaces of the 3 variable functions

(a) f(x, y, z) = x2 + 3y2 + 5z2,
(b) f(x, y, z) = y2 + z2.

Solution.

(a) The level surfaces are concentric ellipsoids centered at the origin, with longest axes in the
x direction and shortest axes in the z direction. The values of f along the level surfaces
decrease down to 0 as we approach (0, 0, 0) and increase as we go away from (0, 0, 0).

(b) The level surfaces are concentric cylinders, centered on the x-axis, with circular profile.
The values of f along the level surfaces decrease down to 0 as the cylinders get smaller
(as we approach the x-axis), and increase for larger cylinders (as we move away from the
x-axis).

�

Problem 5. Find the limit, if it exists, or show the limit does not exist:

(a) lim(x,y)→(3,2)(x
2y3 − 4y2)

(b) lim(x,y)→(0,0)
x4 − 4y2

x2 + 2y2

(c) (Optional bonus) lim(x,y)→(0,0)
xy√
x2 + y2

Solution.

(a) The function is continuous, as it is made up of sums and products of continuous functions,
so the limit is just the value of the function at (3, 2), or

lim
(x,y)→(3,2)

(x2y3 − 4y2) = (3)2(2)3 − 4(2)2 = 56.

(b) Along the x-axis (x = t, y = 0), the pathwise limit is given by

lim
t→0

t4 − 0

t2 + 0
= lim

t→0
t2 = 0.



On the other hand, along the y-axis (x = 0, y = t), the pathwise limit is given by

lim
t→0

0− 4t2

0 + 2t2
= lim

t→0
−2 = −2.

Since these values do not agree, the limit does not exist.
(c) The pathwise limits along the x and y-axes are given by

lim
t→0

t(0)√
t2 + 0

= 0, and lim
t→0

(0)t√
0 + t2

= 0,

respectively, and along any line y = cx (x = t, y = ct), we have

lim
t→0

ct2√
t2 + c2t2

= lim
t→0

ct2√
1 + c2t

= lim
t→0

c√
1 + c2

t = 0.

so we begin to suspect the limit exists and equals 0. To show this properly we note that∣∣∣∣∣ xy√
x2 + y2

− 0

∣∣∣∣∣ =
|x| |y|√
x2 + y2

≤ (
√
x2 + y2)(

√
x2 + y2)√

x2 + y2
=
√
x2 + y2

since both |x| ≤
√
x2 + y2 and |y| ≤

√
x2 + y2. Thus given any ε > 0, we can set δ = ε

and then whenever

|〈x, y〉 − 〈0, 0〉| =
√
x2 + y2 < δ

it follows that ∣∣∣∣∣ xy√
x2 + y2

− 0

∣∣∣∣∣ ≤√x2 + y2 < δ = ε,

so the definition of the limit is satisfied.

�

Problem 6. Suppose f(t) and g(t) are single variable functions with ordinary derivatives
f ′(t) and g′(t), respectively. Compute the partial derivatives ∂h

∂x
and ∂h

∂y
, where

(a) h(x, y) = f(x) + g(y)
(b) h(x, y) = f(x)g(y)
(c) h(x, y) = f(x+ y)
(d) h(x, y) = f(xy)
(e) h(x, y) = f(x/y)

Solution.

(a) ∂h
∂x

= f ′(x), ∂h
∂y

= g′(y).

(b) ∂h
∂x

= g(y)f ′(x), ∂h
∂y

= f(x)g′(y).

(c) ∂h
∂x

= f ′(x+ y), ∂h
∂y

= f ′(x+ y).

(d) ∂h
∂x

= yf ′(xy), ∂h
∂y

= xf ′(xy).

(e) ∂h
∂x

= 1
y
f ′(x/y), ∂h

∂y
= − x

y2
f ′(x/y).

�



Problem 7. The diffusion equation or heat equation

∂u

∂t
= k

∂2u

∂x2
,

where k > 0 is a constant, models the diffusion of heat u(x, t) through a thin wire (x =
location along the wire, t = time), or the concentration u(x, t) of a pollutant at time t at a
distance x from the source of the pollution. Verify that the function

u(x, t) =
1√

4πkt
e−x

2/(4kt)

is a solution to the diffusion equation.

Solution. Computing the partial derivatives with respect to x gives

∂u

∂x
=

1√
4πkt

(
−2x

4kt

)
e−x

2/(4kt) =
−x
2kt

u(x, t)

∂2u

∂x2
= − 1

2kt
u(x, t)− x

2kt

∂u

∂x

=

(
− 1

2kt
+

x2

(2kt)2

)
u(x, t),

while the partial derivative with respect to t is

∂u

∂t
= −1

2

(
4πk

(4πkt)3/2

)
e−x

2/(4kt) +
1√

4πkt

(
x2(4k)

(4kt)2

)
e−x

2/(4kt)

=

(
−k
2kt

+
kx2

(2kt)2

)
1√

4πkt
e−x

2/(4kt)

= k

(
x2

(2kt)2
− 1

2kt

)
u(x, t),

so indeed ∂u
∂t

= k ∂2u
∂x2 holds. �


