Calc III: Workshop 4, Fall 2018

Problem 1. Let $u = e^{r\theta} \sin \theta$. Compute the partial derivative $\frac{\partial^3 u}{\partial r^2 \partial \theta}$.

Problem 2. Determine whether each of the following functions is a solution to Laplace's equation $u_{xx} + u_{yy} = 0$.

(a) $u = x^2 + y^2$ (b) $u = x^2 - y^2$ (c) $u = x^3 - 3xy^2$ (d) $u = \ln \sqrt{x^2 + y^2}$

Problem 3. Is it possible that a function f(x, y) has partial derivatives $f_x(x, y) = x + 4y$ and $f_y(x, y) = 3x - y$?

Problem 4. Find the tangent plane at (2, -1, -3) to the surface $z = 3y^2 - 2x^2 + x$

Problem 5. Find the tangent plane at $(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ to the surface $x^2 + 2y^2 + z^2 = 1.$

Problem 6. The length ℓ , width w and height h of a box change with time. At a certain instant the dimensions are $\ell = 1$ m and w = h = 2 m, and ℓ and w are increasing at a rate of 2 m/s while h is decreasing at a rate of 3 m/s. At that instant find the rates at which the following quantities are changing:

- (a) The volume
- (b) The surface area
- (c) The length of a diagonal

Problem 7.

- (a) Given that f is a differentiable function with f(2,5) = 6, $f_x(2,5) = 1$, and $f_y(2,5) = -1$, use the linear approximation to estimate f(2.2, 4.9).
- (b) Generalize the formula for linear approximations to functions of three variables, find the linear approximation to the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at (3, 2, 6) and use this linear approximation to approximate the number $\sqrt{(3.02)^2 + (1.97)^2 + (5.99)^2}$ (don't use the exact formula).