
Calc III: Workshop 4 Solutions, Fall 2018

Problem 1. Let u = erθ sin θ. Compute the partial derivative ∂3u
∂r2∂θ

.

Solution. We have

ur = θerθ sin θ

urr = θ2erθ sin θ, urrθ = 2θerθ sin θ + θ2rerθ sin θ + θ2erθ cos θ.
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Problem 2. Determine whether each of the following functions is a solution to Laplace’s
equation uxx + uyy = 0.

(a) u = x2 + y2

(b) u = x2 − y2
(c) u = x3 − 3xy2

(d) u = ln
√
x2 + y2

Solution.

(a) uxx = 2, uyy = 2, so uxx + uyy = 4 6= 0.
(b) uxx = 2, uyy = −2, so uxx + uyy = 0.
(c) uxx = 6x, uyy = −6x so uxx + uyy = 0.
(d)

ux =
x

x2 + y2
, uy =

y

x2 + y2
,

uxx =
(x2 + y2)− x(2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2

uyy =
x2 − y2

(x2 + y2)2

so uxx + uyy = 0.

�

Problem 3. Is it possible that a function f(x, y) has partial derivatives fx(x, y) = x + 4y
and fy(x, y) = 3x− y?

Solution. No. Recall that for a nice function (having continuous second partial derivatives),
fxy = fyx. Since ∂

∂y
fx = 4 and ∂

∂x
fy = 3 are continuous but not equal, there cannot be such

a function. �

Problem 4. Find the tangent plane at (2,−1,−3) to the surface

z = 3y2 − 2x2 + x

Solution. The linear approximation of f(x, y) = 3y2 − 2x2 + x at (x0, y0) = (2,−1) is given
by

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)
= −3 + (−2(2)− 1)(x− 2) + (3(−1))(y + 1)

= −3− 5(x− 2)− 3(y + 1).



The tangent plane is then the graph z = L(x, y) of this linear approximation, so

z = −3− 5(x− 2)− 3(y + 1).
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Problem 5. Find the tangent plane at (1
2
, 1
2
,−1

2
) to the surface

x2 + 2y2 + z2 = 1.

Solution. The surface is not in the form z = f(x, y), but we can write it in this form by
solving for z:

z = −
√

1− x2 − 2y2.

Note that we take the negative square root since the point of interest is below the xy-plane.
The partial derivatives of f(x, y) = −

√
1− x2 − 2y2 are given by

fx(x, y) =
x√

1− x2 − 2y2
, fy(x, y) =

2y√
1− x2 − 2y2

,

so

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) = −1
2

+ (1)(x− 1
2
) + (2)(y − 1

2
)

and the tangent plane is given by

z = L(x, y) == −1
2

+ (1)(x− 1
2
) + (2)(y − 1

2
).

�

Problem 6. The length `, width w and height h of a box change with time. At a certain
instant the dimensions are ` = 1 m and w = h = 2 m, and ` and w are increasing at a rate
of 2 m/s while h is decreasing at a rate of 3 m/s. At that instant find the rates at which the
following quantities are changing:

(a) The volume
(b) The surface area
(c) The length of a diagonal

Solution.

(a) The volume, as a function of `, w and h is

V (`, w, h) = `wh

so
d

dt
V = w(t)h(t)`′(t) + `(t)h(t)w′(t) + `(t)w(t)h′(t)

= (2)(2)(2) + (1)(2)(2) + (1)(2)(−3) = 6m3/s.

(b) The surface area is given by

S(`, w, h) = 2`w + 2`h+ 2wh

so
d

dt
S = 2(w+h)`′+2(`+h)w′+2(`+w)h′ = 2(2+2)(2)+2(1+2)(2)+2(1+2)(−3) = 10m2/s.



(c) The length of a diagonal is given by

D(`, w, h) =
√
`2 + w2 + h2,

so
d

dt
D =

1√
`2 + w2 + h2

(``′ + ww′ + hh′) =
(1)(2) + (2)(2) + (2)(−3)√

12 + 22 + 22
= 0m/s.
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Problem 7.

(a) Given that f is a differentiable function with f(2, 5) = 6, fx(2, 5) = 1, and fy(2, 5) = −1,
use the linear approximation to estimate f(2.2, 4.9).

(b) Generalize the formula for linear approximations to functions of three variables, find the

linear approximation to the function f(x, y, z) =
√
x2 + y2 + z2 at (3, 2, 6) and use this

linear approximation to approximate the number
√

(3.02)2 + (1.97)2 + (5.99)2 (don’t use
the exact formula).

Solution.

(a) The linear approximation here is

L(x, y) = 6 + 1(x− 2)− (y − 5),

so
f(2.2, 4.9) ≈ L(2.2, 4.9) = 6 + (0.2)− (−0.1) = 6.3.

(b) The generalization to three variables is

L(x, y, z) = f(x0, y0, z0) + fx(x0, y0, z0)(x−x0) + fy(x0, y0, z0)(y− y0) + fz(x0, y0, z0)(z− z0).
In this case the partial derivatives are given by

fx =
x√

x2 + y2 + z2
, fy =

y√
x2 + y2 + z2

, fz =
z√

x2 + y2 + z2
.

Evaluating at (3, 2, 6) and computing L(x, y, z) gives

L(x, y, z) = 7 + 3
7
(x− 3) + 2

7
(y − 2) + 6

7
(z − 6).

Then

f(3.02, 1.97, 5.99) ≈ L(3.02, 1.97, 5.99) = 7 + 3
7
(0.02) + 2

7
(−0.03) + 6

7
(−0.01) = 7− 6

700
.

�


