
Calc III: Workshop 5 Solutions, Fall 2018

Problem 1. The temperature at a point (x, y, z) is given by

T (x, y, z) = 200e−x
2−3y2−9z2

where T is measured in Celcius and x, y, z are in meters.

(a) Find the rate of change of the temperature at the point P (2,−1, 2) in the direction from
P toward the point Q(3,−3, 3).

(b) In what direction does the temperature increase fastest at P?
(c) Find the maximum rate of increase at P .

Solution.

(a) We want to compute a directional derivative. The direction is given by the difference

vector u =
−→
PQ = 〈1,−2, 1〉. Next we need to normalize this vector to get the unit vector

u = 1√
6
〈1,−2, 1〉 .

The gradient of T is given by

∇T (x, y, z) = 200e−x
2−3y2−9z2 〈−2x,−6y,−18z〉

The rate of change is given by the directional derivative

DuT (2,−1, 2) = ∇T (2,−1, 2) · v = 200e−(4+3+36) 〈−4, 6,−36〉 · 1√
6
〈1,−2, 1〉

=
200e−43√

6
(−4− 12− 36) = −200(52)e−43√

6
≈ 9× 10−16◦C/m.

(b) The rate of increase is fastest in the direction of the gradient, which is the unit vector

∇T (2,−1, 2)

|∇T (2,−1, 2)|
=

1√
337
〈−2, 3,−18〉 .

(c) The rate of increase in this direction is the magnitude of the gradient:

|∇T (2,−1, 2)| =
∣∣200e−43 〈−4, 6,−36〉

∣∣ = 200e−432
√

337 ≈ 1.5× 10−15◦C/m.

�

Problem 2. Show that every plane tangent to the cone z2 = x2 + y2 passes through the
origin.

Solution. The cone is a level surface of the function g(x, y, z) = x2 + y2 − z2. The gradient
of g is

∇g = 〈2x, 2y,−2z〉 .
This is always normal to the surface, so the tangent plane to the cone through the point
(x0, y0, z0) is given by

〈2x0, 2y0,−2z0〉·〈x− x0, y − y0, z − z0〉 = 0 ⇐⇒ x0(x−x0)+y0(y−y0)−z0(z−z0) = 0

To see if this plane contains the origin, we plug in (x, y, z) = (0, 0, 0) and see if it solves the
equation:

x0(0− x0) + y0(0− y0)− z0(0− z0) = x20 + y20 − z20 = 0

which holds since (x0, y0, z0) is a point on the cone! �



Problem 3. At what point on the ellipsoid x2 + y2 + 2z2 = 1 is the tangent plane parallel
to the plane x+ 2y + z = 1?

Solution. Equivalently, we want to know at what point a normal vector to the ellipsoid is
parallel to the normal vector of the plane, which is the coefficient vector 〈1, 2, 1〉. The normal
to the ellipsoid is given by the gradient of the function f(x, y, z) = x2 + y2 + 2z2:

∇f(x, y, z) = 〈2x, 2y, 4z〉 .
So we want to know is for what point x, y, z is there a solution to the equations

∇f(x, y, z) = 〈2x, 2y, 4z〉 = λ 〈1, 2, 1〉 , x2 + y2 + 2z2 = 1

for some λ, which boils down to the system of equations

2x = λ

y = λ

4z = λ

x2 + y2 + 2z2 = 1.

Solving the first three equations for x, y, and z and plugging them into the fourth gives

λ2(1
4

+ 1 + 2
16

) = 1 =⇒ λ = ± 4√
22

This gives the pair of points ±(2/
√

22, 4/
√

22, 1/
√

22), at which the tangent plane to the
ellipsoid is parallel to x+ 2y + z = 1. �

Problem 4. Find all local maxima, minima, and saddle points of the function f(x, y) =
2− x4 + 2x2 − y2.

Solution. The critical points are determined from the equation

〈0, 0〉 = ∇f(x, y) =
〈
−4x3 + 4x,−2y

〉
which amounts to the pair of equations

x(x2 − 1) = 0 y = 0.

From the second equation y must vanish, and from the first equation we get x = 0, 1, or −1.
Thus there are three critical points

(0, 0), (1, 0), and (−1, 0).

The discriminant is

Df =

∣∣∣∣fxx fxy
fxy fyy

∣∣∣∣ =

∣∣∣∣−12x2 + 4 0
0 −2

∣∣∣∣ = (−12x2 + 4)(−2).

We have
Df(0, 0) = (4)(−2) < 0, Df(±1, 0) = (−12 + 4)(−2) > 0,

moreover fxx(±1, 0) = −12 + 4 < 0, so we conclude that (0, 0) is a saddle point, and (±1, 0)
are local maxima. �

Problem 5. Find the shortest distance from the point (2, 0,−3) to the plane x + y +

z = 1. [Hint: instead of minimizing the function
√

(x− 2)2 + (y − 0)2 + (z + 3)2, it is
computationally much easier to minimize its square.]



Solution. We want to minimize the function (x−2)2 +y2 + (z−3)2 subject to the constraint
x + y + z = 1. Solving for y (say) in terms of x and z reduces the problem to minimizing
the function

f(x, z) = (x− 2)2 + (1− x− z)2 + (z − 3)2.

The critical points are given by the solutions to the pair of equations

fx = 2(x− 2)− 2(1− x− z) = 0, and fy = −2(1− x− z) + 2(z − 3) = 0

which simply to the system of two equations

2x+ z − 3 = 0 x+ 2z + 2 = 0.

Subtracting twice the second equation from the first gives z = −7/3, and from the second
equation we then get x = 8/3. Plugging back in for y = 1 − x − z gives y = 2/3. Thus
the point on the plane which minimizes the distance is the point (8/3, 2/3,−7/3), and the
minimizing distance is√

(2− 8/3)2 + (0− 2/3)2 + (−3− 7/3)2 =
2√
3
.

�

Problem 6. The base of an aquarium of given volume V is made of slate and its four
sides are made of glass. If slate costs five times as much as glass (per unit area), find the
dimensions of the aquarium that minimize the cost of the materials.

Solution. We want to minimize the cost

f(x, y, z) = 2xz + 2yz + 5xy

subject to the constraint xyz = V . Solving for z = V/(xy) and plugging this into f reduces
the problem to minimizing the function

g(x, y) = f(x, y, V/xy) =
2V

y
+

2V

x
+ 5xy

Setting ∇g = 0 gives the equations

5y =
2V

x2
, and 5x =

2V

y2
.

plugging the first into the second results in the equation

x =
5x4

2V
, or x( 5

2V
x3 − 1) = 0.

The solutions to this equation are x = 0 (which is not acceptable since it does not satisfy

the constraint V = xyz), and x = ± (2V/5)1/3, the negative one of which we do not accept
since the dimensions must be positive. Thus x = (2V/5)1/3 and plugging this back into y
gives

y = (2V/5)(2V/5)−2/3 = (2V/5)1/3

also. The cost minimizing dimensions are

x = y = (2V/5)1/3, z = V 1/3(5/2)2/3.

�


