
Calc III: Workshop 7 Solutions, Fall 2018

Problem 1. A lamina occupies the region in the positive quadrant (where x ≥ 0 and y ≥ 0)
which lies inside the circle x2 + y2 = 2 but outside the circle x2 + y2 = 1. Find the center of
mass if the density at any point is inversely proportional to its distance from the origin.

Solution. First we compute the mass of the lamina, given by

M =

∫ π/2

0

∫ √2
1
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r
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=
π
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2
.

By symmetry, it follows that the center of mass (x, y) lies on the line y = x, and so will
satisfy x = y. Thus we compute
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M
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Problem 2. Find the volume of the solid enclosed by the cylinder x2 + z2 = 4 and the
planes y = −1 and y + z = 4.

Solution. There are several ways to set up the integral, but it is convenient to integrate first
in y: ∫∫∫

C

dV =

∫ 2

−2

∫ √2−x2
−
√
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∫ 4−z

−1
dy dz dx

=
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−
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3− zdz dx

At this point in the computation, it may be convenient to switch to polar coordinates in x
and z: ∫ 2

−2

∫ √2−x2
−
√
2−x2

3− zdz dx =

∫ 2π

0

∫ 2

0

(3− r cos θ) r dr dθ = 2π 3
2
(2)2 = 12π.
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Problem 3. Write five other iterated integrals that are equivalent to the iterated integral∫ 1

0

∫ 1

y

∫ y

0

f(x, y, z) dz dx dy.

Solution. Draw the 3D picture and all three 2D projections onto coordinate planes! Then it
follows that ∫ 1

0

∫ 1

y

∫ y

0

f(x, y, z) dz dx dy

=

∫ 1

0

∫ x

0

∫ y
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=
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z

∫ x

z

f(x, y, z) dy dx dz

=

∫ 1

0

∫ x

0

∫ x

z

f(x, y, z) dy dz dx

=

∫ 1

0

∫ 1

z

∫ 1

y

f(x, y, z) dx dy dz

=

∫ 1

0

∫ y

0

∫ 1

y

f(x, y, z) dx dz dy
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Problem 4. Evaluate the triple integral
∫∫∫

C
(4 + 5x2yz2) dV (try using only geometric

interpretation and symmetry), where C is the cylindrical region x2 + y2 ≤ 4, −2 ≤ z ≤ 2.

Solution. The region is symmetric with respect to reflection about the coordinate planes,
and in particular with respect to refletion about y = 0. In the integrand, the second term,
5x2yz2, is odd with respect to reflection about y = 0, so this term will integrate to 0. This
leaves the integral of the first term

∫∫∫
C

4 dV = 4
∫∫∫

C
dV , which computes 4 times the

volume of C. Thus∫∫∫
C

(4 + 5x2yz2) dV = 4Vol(C) = 4(π(2)2)(4) = 64π.
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Problem 5. Find the center of mass of the solid E of constant density, which lies above
the xy-plane and below the paraboloid z = 1− x2− y2. [Hint: it may be useful to switch to
polar coordinates after integrating in z.]

Solution. We may as well assume the constant in the density is 1, since its precise value is
canceled when computing the center of mass.
We can write E as the region 0 ≤ z ≤ 1− x2 − y2, −

√
1− x2 ≤ y ≤

√
1− x2, −1 ≤ x ≤ 1,

so that the integral giving its mass is

M =

∫ 1
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∫ √1−x2
−
√
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0

1 dz dy dx =
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∫ √1−x2
−
√
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1− x2 − y2 dy dx



At this point, we note it is convenient to switch the remaining double integral over to polar
coordinates:

M =

∫ 2π

0

∫ 1

0

(1− r2) r dr dθ

= 2π(1
2
− 1

4
)

=
π

2
.

By symmetry, the x and y coordinates of the center of mass must vanish, so we need only
compute

z =
1

M

∫∫∫
E

z dV

=
1

M

∫ 2π

0

∫ 1

0
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0

z r dr dθ

=
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M

∫ 1

0

1
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2

∣∣1
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=
π
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=

1

2
.

�

Problem 6 (Optional bonus). The simplex of dimension n is the set Tn of points (x1, . . . , xn)
in Rn bounded by the “hyperplanes” xi = 0 for i = 1, . . . , n and x1 + x2 + · · · + xn = 1.
For n = 2 this is a triangle and for n = 3 it is a tetrahedron. Compute the 4-dimensional
volume of the 4-simplex:

Vol(T4) =

∫ ∫ ∫ ∫
1 dx4 dx3 dx2 dx1

Formulate a conjecture for the n-dimensional volume of the n-simplex, and try and prove it!



Solution. The 4-volume is

Vol =

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

∫ 1−x1−x2−x3

0

dx4 dx3 dx2 dx1

=

∫ 1

0

∫ 1−x1

0
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0

(1− x1 − x2 − x3) dx3 dx2 dx1

= −1

2

∫ 1

0
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0

(1− x1 − x2 − x3)2
∣∣1−x1−x2
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dx2 dx1

=
1

2

∫ 1

0
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0

(1− x1 − x2)2 dx2 dx1

= −1

6

∫ 1

0
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∣∣1−x1
x2=0

dx1

=
1

6

∫ 1

0

(1− x1)3 dx1

= − 1

24
(1− x1)4

∣∣1
x1=0

=
1

24
.

Note that it helps immensely to do each integral as a u-substitution where u = 1−x1−x2−
· · · − xn.
The area of the 2-simplex is 1

2
, the volume of the 3-simplex is 1

6
, and in general the n-volume

of the n-simplex is 1
n!

, which can be computed as above for general n. �


