Calc III: Workshop 9.5 (was 10, got renumbered) Solutions, Fall 2018

Problem 1.

- (a) Verify that the vector field $\mathbf{F}(x, y, z) = (2xy + ye^x)\mathbf{i} + (x^2 + e^x)\mathbf{j}$ is conservative, and find a potential function f(x, y).
- (b) Compute the line integral $\int_C \mathbf{F}(x, y) \cdot d\mathbf{r}$, where C is any curve from (0, 1) to (1, 2).

Solution.

(a) We test $\frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(x^2 + e^x) = 2x + e^x = \frac{\partial}{\partial y}(2xy + ye^y) = \frac{\partial P}{\partial y}$, so **F** is conservative. A potential function f must satisfy

$$f_x = 2xy + ye^x$$
$$f_y = x^2 + e^x$$

Integrating both equations in x and y, respectively, gives

$$f(x, y) = x^{2}y + ye^{x} + c_{1}(y)$$

$$f(x, y) = x^{2}y + ye^{x} + c_{2}(x)$$

and we see that we can take $c_1(y) = c_2(x) = 0$, so $f(x, y) = x^2y + ye^x$ is a potential function.

(b) By the fundamental theorem for line integrals,

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(1,2) - f(0,1) = 2e - 1.$$

Problem 2.

- (a) The vector field $\mathbf{F}(x, y, z) = \sin y \mathbf{i} + (x \cos y + \cos z) \mathbf{j} y \sin z \mathbf{k}$ is conservative. Find a potential function f(x, y, z).
- (b) Compute the line integral $\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r}$, where C is the parameterized curve $\mathbf{r}(t) = \sin t \mathbf{i} + t \mathbf{j} + 2t \mathbf{k}, \ 0 \le t \le \pi/2.$

Solution.

(a) A potential function must satisfy

$$f_x = \sin y$$

$$f_y = x \cos y + \cos z$$

$$f_z = -y \sin z$$

Integrating the three equations with respect to x, y, and z, we get

$$f(x, y, z) = x \sin y + c_1(y, z)$$

$$f(x, y, z) = x \sin y + y \cos z + c_2(x, z)$$

$$f_z = y \cos z + c_3(x, y)$$

and we see that we can take $c_1(y, z) = y \cos z$, $c_2(x, z) = 0$, and $c_3(x, y) = x \sin y$. Thus a potential function is $f(x, y, z) = x \sin y + y \cos z$.

(b) By the fundamental theorem for line integrals,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(1, \pi/2, \pi) - f(0, 0, 0) = 1 - \frac{\pi}{2}$$

Problem 3. Show that if the vector field $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ is conservative and P, Q, and R have continuous first order partial derivatives, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}.$$

Solution. If **F** is conservative, then $P = f_x$, $Q = f_y$, and $R = f_z$ for some function f(x, y, z). Then

$$\frac{\partial P}{\partial y} = f_{xy} = f_{yx} = \frac{\partial Q}{\partial x} \quad \frac{\partial P}{\partial z} = f_{xz} = f_{zx} = \frac{\partial R}{\partial x}, \quad \frac{\partial Q}{\partial z} = f_{yz} = f_{zy} = \frac{\partial R}{\partial y}.$$

Problem 4. Use the previous exercise to show that the line integral $\int_C (y \mathbf{i} + x \mathbf{j} + xyz \mathbf{k}) \cdot d\mathbf{r}$ is not independent of path.

Solution. Since $\frac{\partial R}{\partial x} = yz \neq 0 = \frac{\partial P}{\partial z}$, the integrand cannot be a conservative vector field, so the integral is not independent of the path.

Problem 5. Let $\mathbf{F}(x, y) = \frac{-y\mathbf{i}+x\mathbf{j}}{x^2+y^2}$

- (a) Show that $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. (b) Show that $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ is not independent of path. [Hint: compute $\int_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds$ and $\int_{C_2} \mathbf{F} \cdot \mathbf{T} \, ds$ where C_1 and C_2 are the upper and lower halves of the unit circle from (1,0)to (-1,0).] Does this contradict the theorem that says if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ on a simply connected region, then $\mathbf{F} = P \, \mathbf{i} + Q \, \mathbf{j}$ is path independent? Why not?

Solution.

so

(a) We have

$$Q_x = \frac{\partial}{\partial x} \frac{x}{x^2 + y^2} = \frac{x^2 + y^2 - x(2x)}{(x^2 + y^2)^2}, \quad P_y = \frac{\partial}{\partial y} \frac{-y}{x^2 + y^2} = \frac{-(x^2 + y^2) + y(2y)}{(x^2 + y^2)^2},$$
$$Q_x - P_y = \frac{x^2 + y^2 - 2x^2 + (x^2 + y^2) - 2y^2}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2) - 2(x^2 + y^2)}{(x^2 + y^2)^2} = 0.$$

(b) C_1 is parameterized by $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$ where $0 \le t \le \pi$, and $\mathbf{F}(\mathbf{r}(t)) = \frac{1}{\cos^2 t + \sin^2 t} \langle -\sin t, \cos t \rangle =$ $\langle -\sin t, \cos t \rangle$. Then

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^\pi \langle -\sin t, \cos t \rangle \cdot \langle -\sin t, \cos t \rangle \, dt = \int_0^\pi 1 \, dt = \pi.$$

On the other hand, C_2 is parameterized by $\mathbf{r}(t) = \langle \cos t, -\sin t \rangle$ for $0 \le t \le \pi$. We have

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^\pi \langle \sin t, \cos t \rangle \cdot \langle -\sin t, -\cos t \rangle \, dt = \int_0^\pi -1 \, dt = -\pi$$

so $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} \neq \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$, despite the fact that C_1 and C_2 have the same endpoints. This is not a contradiction to the theorem, since \mathbf{F} itself, and hence the derivatives of P and Q, are not defined at (0,0), thus the equation $Q_x = P_y$ can only be said to hold on $\mathbb{R}^2 \setminus (0,0)$, which is not a simply connected region, so we can't conclude that **F** is conservative.

Problem 6. Let $\mathbf{F} = \nabla f$, where $f(x, y) = \sin(x - 2y)$. Find curves C_1 and C_2 that are not closed and satisfy the equation

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 0, \qquad \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 1.$$

Solution. There are many possible answers. It suffices to let C_1 be any curve, say, from (0,0)to $(\pi, 0)$, and C_2 any curve from (0, 0) to $(\pi/2, 0)$.