Complex Analysis, Supplementary Homework Problems 1

Problem 1. Determine the maximum of $|f|$ on $\bar{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ for
(a) $f(z)=e^{z^{2}}$
(b) $f(z)=\frac{z+3}{z-3}$
(c) $f(z)=3-|z|^{2}$

Do any of these examples violate the maximum principle? Why or why not?
Problem 2. Which of the following functions have a removable singularity at $z=0$?
(a) $\frac{e^{z}}{z^{17}}$
(b) $\frac{z}{e^{z}-1}$
(c) $\frac{\cos z-1}{z^{2}}$

Problem 3. Prove the complex version of L'Hopital's rule: if $f, g: \Omega \longrightarrow \mathbb{C}$ are holomorphic with zeroes at $w \in \Omega$ of the same order k, then the function $h=\frac{f}{g}$ has a removable singularity at w and

$$
\lim _{z \rightarrow w} \frac{f(z)}{g(z)}=\frac{f^{(k)}(w)}{g^{(k)}(w)}
$$

Problem 4. Find the residues of the following meromorphic functions at all singular points:
(a) $\frac{z^{3}}{(1+z)^{3}}$,
(b) $\frac{1}{\left(z^{2}+1\right)^{3}}$
(c) $\frac{1}{\left(z^{2}+1\right)(z-1)^{2}}$

Problem 5. Suppose f is a holomorphic function having exactly one simple zero inside the closed disk $\bar{D}_{R}=$ $\{|z| \leq R\}$ and not on the boundary $C_{R}=\partial \bar{D}_{R}$. Show that the location of the zero is given by

$$
w=\frac{1}{2 \pi i} \int_{C_{R}} \frac{z f^{\prime}(z)}{f(z)} d z
$$

Problem 6. Use Rouché's theorem to determine the number of zeroes of the polynomial $z^{7}-5 z^{4}+i z^{2}-2$ inside the disk $\{|z|<1\}$. (Hint: Let $f(z)=-5 z^{4}$.)

Problem 7.
(a) For each of the following complex numbers z, calculate the principal value of the logarithm $\log (z)$:

$$
i, \quad-i, \quad-1, \quad x \in(0, \infty), \quad 1+i
$$

(b) Calculate the principal values of the following numbers and compare them:

$$
(i(i-1))^{i} \quad \text { and } \quad i^{i}(i-1)^{i}
$$

