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1. The Eilenberg-Zilber Theorem

1.1. Tensor products of chain complexes. Let C∗ and D∗ be chain complexes.
We define the tensor product complex by taking the chain space

C∗ ⊗D∗ =
⊕
n∈Z

(C∗ ⊗D∗)n , (C∗ ⊗D∗)n =
⊕
p+q=n

Cp ⊗Dq

with differential defined on generators by

∂⊗(a⊗ b) := ∂a⊗ b+ (−1)pa⊗ ∂b, a ∈ Cp, b ∈ Dq (1)

and extended to all of C∗ ⊗ D∗ by bilinearity. Note that the sign convention (or
something similar to it) is required in order for ∂2⊗ ≡ 0 to hold, i.e. in order for
C∗ ⊗D∗ to be a complex.

Recall that if X and Y are CW-complexes, then X × Y has a natural CW-
complex structure, with cells given by the products of cells on X and cells on Y. As
an exercise in cellular homology computations, you may wish to verify for yourself
that

CCW
∗ (X)⊗ CCW

∗ (Y ) ∼= CCW
∗ (X × Y ).

This involves checking that the cellular boundary map satisfies an equation like (1)
on products a× b of cellular chains.

We would like something similar for general spaces, using singular chains. Of
course, the product ∆p × ∆q of simplices is not a p + q simplex, though it can
be subdivided into such simplices. There are two ways to do this: one way is
direct, involving the combinatorics of so-called “shuffle maps,” and is somewhat
tedious. The other method goes by the name of “acyclic models” and is a very slick
(though nonconstructive) way of producing chain maps between C∗(X) ⊗ C∗(Y )
and C∗(X × Y ), and is the method we shall follow, following [Bre97].1

The theorem we shall obtain is

Theorem 1.1 (Eilenberg-Zilber). There exist chain maps

× : C∗(X)⊗ C∗(Y ) −→ C∗(X × Y ), and

θ : C∗(X × Y ) −→ C∗(X)⊗ C∗(Y )

which are unique up to chain homotopy, are natural in X and Y , and such that
θ ◦ × and × ◦ θ are each chain homotopic to the identity.

1Note that Bredon uses a different sign convention for tensor products of chain maps. While

his convention has some particularly nice features, notably that ∂⊗ = ∂⊗1 + 1⊗∂ can be written
without an explicit sign depending on the degree of the element it is acting on, we will observe a

sign convention which is consistent with [Hat02].
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Corollary 1.2. The homology of the space X×Y may be computed as the homology
of the chain complex C∗(X)⊗ C∗(Y ):

Hn(X × Y ) ∼= Hn

(
C∗(X)⊗ C∗(Y )

)
Note that the right hand side H∗

(
C∗(X) ⊗ C∗(Y )

)
is not generally equal to

the tensor product H∗(X) ⊗ H∗(Y ). The failure of this equality to hold is the
content of the (topological) Künneth theorem, which is very similar to the universal
coefficient theorem for homology, with the obstruction consisting of Tor groups
Tor(Hp(X), Hq(Y )).

1.2. Cross product. We will first construct the cross product

× : C∗(X)⊗ C∗(Y ) −→ C∗(X × Y ).

It will suffice to define this on generators: given simplices σ : ∆p −→ X and
τ : ∆q −→ Y, we will define the chain σ × τ ∈ Cp+q(X × Y ). Observe that when
either p or q is 0 there is an obvious way to do this. Indeed, if σ is a 0-simplex, its
image is just some point x ∈ X, and for each x ∈ X there is a unique such singular
0-simplex, which we will (abusively) denote as x:

x : ∆0 −→ x ∈ X
If τ : ∆q −→ Y is any q-simplex on Y , then

x× τ : ∆q
∼= ∆0 ×∆q −→ x× τ(∆q) ⊂ X × Y (2)

is a q-simplex on X×Y. Similarly, σ×y : ∆p −→ X×Y is defined for any p-simplex
σ on X and 0-simplex y ∈ Y .

Proposition 1.3. For any X and Y there exists a chain map × : C∗(X) ⊗
C∗(Y ) −→ C∗(X × Y ) (which we will denote by a× b := ×(a⊗ b)) such that

(i) × coincides with the natural map (2) when one factor is a 0-chain.
(ii) With respect to the differentials, × satisfies

∂(a× b) = ∂a× b+ (−1)|a|a× ∂b. (3)

(iii) × is natural in X and Y ; in other words if f : X −→ X ′ and g : Y −→ Y ′

are continuous maps, then

(f × g)#(a× b) = (f#a)× (g#b). (4)

Remark. The trick here, called the “method of acyclic models,” is that it suffices
to consider a very special case, namely when X = ∆p and Y = ∆q are themselves
simplices, and the chains on X and Y are the identity maps ip : ∆p −→ ∆p

and iq : ∆q −→ ∆q thought of as singular simplices (these are the “models,”
the “acyclic” part refers to the fact that ∆p × ∆q has trivial homology, being
contractible.)

In the induction step, to define ip × iq we formally compute its boundary, using
property (ii). This gives a chain which we compute to be a cycle. “Of course it
is a cycle,” you say, “it is a boundary!” But this not correct since the thing it is
supposed to be a boundary of, namely ip × iq has not yet been defined! However,
since ∆p×∆q is acyclic (has trivial homology groups), any cycle must be a boundary
of some chain, and we then define ip × iq to be this chain. The definition of σ × τ
for general p- and q-chains on spaces X and Y is then forced by naturality.
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Proof. We define × : Cp(X)⊗Cq(Y ) −→ Cp+q(X × Y ) by induction on n = p+ q.
The base case n = 1 is determined by property (i) above.

Thus suppose × has been defined on chains of degree p and q for arbitrary spaces,
for all p+ q ≤ n− 1. Suppose now p+ q = n, and let

ip : ∆p −→ ∆p, iq : ∆q −→ ∆q

be the identity maps, but viewed as a singular p- and q-simplices on the spaces ∆p

and ∆q, respectively. These are the “models,” and we will first define ip × iq ∈
C∗(∆p ×∆q).

Were ip × iq to be defined, its boundary would have to be

“∂(ip × iq)” = ∂ip × iq + (−1)pip × ∂iq (5)

by property (ii). The left-hand side is not yet defined, but the right-hand side is a
well-defined chain in Cn−1(∆p×∆q) by the induction hypothesis. We observe that
the right-hand side of (5) is a cycle:

∂(RHS) = ∂2ip × iq + (−1)p−1∂ip × ∂iq + (−1)p∂ip × ∂iq + ip × ∂2iq = 0

and since Hn−1(∆p ×∆q) = 0, this cycle is the boundary of some chain:

RHS = ∂α, α ∈ Cn(∆p ×∆q)

We take ip × iq to be this chain:

ip × iq := α ∈ Cn(∆p ×∆q).

Now suppose we have singular simplices σ : ∆p −→ X and τ : ∆q −→ Y. Viewed
as continuous maps of spaces, these induce chain maps

σ# : C∗(∆p) −→ C∗(X), τ# : C∗(∆q) −→ C∗(Y )

and we observe that, as chains, σ and τ can be written as pushforwards of the
models:

σ = σ#(ip) : ∆p −→ X, τ = τ#(iq) : ∆q −→ Y.

(This is so tautologous as to be somewhat confusing! Make sure you understand
what is going on here.) Property (iii) forces us to define

σ × τ = σ#(ip)× τ#(iq) = (σ × τ)#(ip × iq).

We verify that this satisfies property (ii):

∂(σ × τ) = ∂(σ × τ)#(ip × iq)
= (σ × τ)#

(
∂(ip × iq)

)
= (σ × τ)# (∂ip × iq) + (−1)p(σ × τ)# (ip × ∂iq)
= σ#(∂ip)× τ#(iq) + (−1)pσ#(ip)× τ#(∂iq)

= ∂σ#(ip)× τ#(iq) + (−1)pσ#(ip)× ∂τ#(iq)

= ∂σ × τ + (−1)pσ × ∂τ.

Extending × bilinearly to chains completes the induction. �
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1.3. The dual product. Next we define θ : C∗(X×Y ) −→ C∗(X)⊗C∗(Y ). Once
again, there is an obvious definition on 0-chains namely, if

(x, y) : ∆0 −→ (x, y) ∈ X × Y

is a 0-simplex, which we identify with its image in X × Y, we should take

θ(x, y) = x⊗ y ∈ C0(X)⊗ C0(Y ) (6)

We again use acyclic models, defining θ first on the model simplices dn : ∆n −→
∆n × ∆n given by the diagonal inclusion dn(v) = (v, v). We shall require the fol-
lowing lemma, which gives the acyclicity of the chain complexes C∗(∆n)⊗C∗(∆n).

Lemma 1.4. If X and Y are contractible spaces, then

Hn

(
C∗(X)⊗ C∗(Y )

)
=

{
0 n 6= 0

Z n = 0.

Proof. First we recall a construction giving a chain contraction of C∗(X). Let F :
X×I −→ X be a homotopy between the identity F (·, 0) = Id and the contraction to
a point F (·, 1) = x0 ∈ X. We will define a chain homotopy D : C∗(X) −→ C∗+1(X)
such that

Id− ε = D∂ + ∂D

where ε is the chain map C∗(X) −→ C∗(X) which is the zero map in all nonzero
degrees, and the augmentation map ε(

∑
i niσi) =

∑
i ni ∈ Z in degree 0.

Recall that one canonical construction of the n simplex ∆n is as the set of points

∆n =
{∑n

i=0
tiei

∣∣ ∑
i
ti = 1

}
⊂ Rn+1

where {e0, . . . , en} is the standard basis in Rn+1. With this description we can
regard (t0, . . . , tn) as “coordinates” ∆n, which are overdetermined since

∑
i ti = 1.

In particular, the faces of ∆n are given by {ti = 0} : i = 0, . . . , n and the vertices
are given by {ti = 1} .

Given a singular n-simplex σ : ∆n −→ X, we define D(σ) to be the (n + 1)-
simplex

D(σ)(t0, . . . , tn+1) = F
(
σ(t1, . . . , tn), t0

)
: ∆n+1 −→ X

Observe that the face ∆n
∼= {t0 = 0} ⊂ ∆n+1 is mapped onto σ(∆n) and the vertex

{t0 = 1} is mapped onto the contraction point x0.
If σ has degree ≥ 1, one can check that

∂D(σ) = σ −D(∂σ)

and if σ has degree 0 then

∂D(σ) = σ − x0
where we identify x0 and the 0-simplex with image x0 ∈ X. Thus ∂D+D∂ = Id− ε
where ε is 0 in nonzero degrees and ε(

∑
i niσi) =

∑
i nix0 can be identified with

the augmentation map in degree 0.
Now since X and Y are both contractible, we have such chain homotopies for

each complex C∗(X) and C∗(Y ). It suffices to combine them somehow into a chain
homotopy of C∗(X) ⊗ C∗(Y ) from Id ⊗ Id to ε ⊗ ε, for then H∗

(
C∗(X) ⊗ C∗(Y )

)
will be equal to the homology of the image under ε⊗ ε, which is a trivial complex
with only a copy of Z in degree 0.
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Define Q : (C∗(X)⊗ C∗(Y ))∗ −→ (C∗(X)⊗ C∗(Y ))∗+1 by

Q(a⊗ b) = (D⊗ ε)(a⊗ b) + (−1)|a|(1⊗D)(a⊗ b) = D(a)⊗ ε(b) + (−1)|a|a⊗D(b).

We compute ∂⊗Q+Q∂⊗, acting on an element a⊗ b (which we will omit)

∂⊗Q+Q∂⊗ = ∂D ⊗ ε+ (−1)|a|+1D ⊗ ∂ε+ (−1)|a|∂ ⊗D + (−1)2|a|1⊗ ∂D

+D∂ ⊗ ε+ (−1)|a|D ⊗ ε∂ + (−1)|a|−1∂ ⊗D + (−1)2|a|1⊗D∂
= (∂D +D∂)⊗ ε+ 1⊗ (∂D +D∂)

= (1− ε)⊗ ε+ 1⊗ (1− ε)
= 1⊗ 1− ε⊗ ε.

Thus Q is a chain homotopy between Id = 1⊗ 1 and ε⊗ ε. �

Proposition 1.5. For any X and Y , there exists a chain map θ : C∗(X × Y ) −→
C∗(X)⊗ C∗(Y ) such that

(i) θ is given by (6) on 0-chains.
(ii) ∂⊗ ◦ θ = θ ◦ ∂.

(iii) If f : X −→ X ′ and g : Y −→ Y ′ are continuous maps, then

θ ◦ (f × g)# = (f# ⊗ g#) ◦ θ.

Proof. The proof is by acyclic models. By induction, suppose that such θ : Ck(X×
Y ) −→

(
C∗(X)⊗C∗(Y )

)
k

has been defined for chains of degree k ≤ n−1. (Property

(i) furnishes the base case k = 0.)
Consider the product space ∆n ×∆n and let

dn : ∆n −→ ∆n ×∆n

denote the diagonal inclusion, viewed as a singular n-simplex. In order to define
θ(dn) we compute its formal boundary

“∂θ(dn)” = θ(∂dn) ∈
(
C∗(∆n)⊗ C∗(∆n)

)
n−1. (7)

The right-hand side is a well-defined chain by the induction hypothesis, which is a
cycle since

∂
(
θ(∂dn)

)
= θ(∂2dn) ≡ 0

By Lemma 1.4 the chain complex C∗(∆n) ⊗ C∗(∆n) has trivial homology groups
(except in degree 0, but in the case n = 1, it can be seen that the right-hand side
of (7) maps to 0 by the augmentation map, hence its homology class is 0) so the
right-hand side of (7) is a boundary

θ(∂dn) = ∂⊗β, β ∈
(
C∗(∆n)⊗ C∗(∆n)

)
n

and we define θ(dn) := β.
For a general product space X × Y with singular n-simplex σ : ∆n −→ X × Y ,

composition with the projections πX : X × Y −→ X and πY : X × Y −→ Y gives
maps

πXσ : ∆n −→ X, πY σ : ∆n −→ Y

and we consider the chain map

(πXσ × πY σ)# : C∗(∆n ×∆n) −→ C∗(X × Y )
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induced by the product πXσ × πY σ : ∆n × ∆n −→ X × Y. Observe that, as an
n-chain, σ is given by the composition

σ = (πXσ × πY σ)# (dn) : ∆n −→ X × Y

Thus the naturality property (iii) forces the definition

θ(σ) = θ (πXσ × πY σ)# (dn) := (πXσ)# ⊗ (πY σ)# θ(dn).

We verify that this satisfies property (ii):

∂⊗θ(σ) = ∂⊗
(

(πXσ)# ⊗ (πY σ)# θ(dn)
)

= (πXσ)# ⊗ (πY σ)# ∂⊗θ(dn)

= (πXσ)# ⊗ (πY σ)# θ(∂dn)

= θ (πXσ × πY σ)# (∂dn)

= θ∂ (πXσ × πY σ)# (dn)

= θ∂σ.

Extending θ linearly to chains completes the induction. �

1.4. Chain homotopies. Our constructions of × and θ above involved noncanon-
ical choices (of chains whose boundary was a given chain, for instance) so we must
show that, up to chain homotopy, the particular choice made is irrelevant. We will
also show that × and θ are inverses up to chain homotopy. Both of these facts
follow from the next proposition.

Proposition 1.6. Any two natural chain maps from C∗(X × Y ) to itself, or from
C∗(X)⊗C∗(Y ) to itself, or from one of these to the other, which are the canonical
ones in degree 0, are chain homotopic.

Proof. The proof (once again via acyclic models) in all four cases is essentially the
same: one defines the chain homotopy map D by induction, constructing it first on
the models ip ⊗ iq ∈ Cp(∆p)⊗ Cq(∆q) or dn ∈ Cn(∆n ×∆n) and then on general
chains by naturality. To illustrate how it goes, we will present one of the cases in
detail and leave the others to the reader. See [Bre97] for another of the cases.

Suppose φ and ψ are two chain maps

φ, ψ : C∗(X)⊗ C∗(Y ) −→ C∗(X)⊗ C∗(Y )

which are natural in X and Y and equal to the identity on 0 chains. Define D :
(C∗(X)⊗ C∗(Y ))∗ −→ (C∗(X)⊗ C∗(Y ))∗+1 to be the zero map on 0 chains, and
by induction assume D has been defined on chains of degree ≤ n− 1 and naturally
in X and Y , so that

∂D = φ− ψ −D∂. (8)

Let p+ q = n. To define D(ip ⊗ iq) ∈ (C∗(∆p)⊗ C∗(∆q))n+1 we compute

∂ (φ− ψ −D∂) (ip ⊗ iq) = (φ∂ − ψ∂ − (∂D)∂) (ip ⊗ iq)
= (φ∂ − ψ∂ − (φ− ψ −D∂)∂) (ip ⊗ iq)
=
(
φ∂ − ψ∂ − φ∂ + ψ∂ +D∂2

)
(ip ⊗ iq)

≡ 0 ∈ (C∗(∆p)⊗ C∗(∆q))n

so (φ−ψ−D∂)(ip⊗iq) is a cycle, hence a boundary ∂β for some β ∈ (C∗(∆p)⊗ C∗(∆q))n+1

and we set D(ip ⊗ iq) = β. Thus D satisfies (8).
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For τ ⊗ σ ∈ Cp(X)⊗ Cq(Y ) we then define

D(τ ⊗ σ) = (τ# ⊗ σ#)
(
D(ip ⊗ iq)

)
.

whence D is natural in X and Y . Since φ, ψ and ∂ are also natural, (8) holds and
this completes the inductive step. �

Theorem 1.1 is now a direct consequence of Propositions 1.3, 1.5 and 1.6.
We shall require one other consequence of this chain homotopy result, which

determines the effect of switching the factors in the external product. Let T :
X × Y −→ Y × X be the obvious transposition map. Since T 2 = Id this map
induces an isomorphism

T# : C∗(X × Y ) −→ C∗(Y ×X)

and similarly on homology. On the other side, we consider the transition map

τ :C∗(X)⊗ C∗(Y ) −→ C∗(Y )⊗ C∗(X)

α⊗ β 7−→ (−1)|α||β|β ⊗ α

Note that the sign is required in order for τ to be a chain map (so that ∂⊗τ = τ∂⊗),
which is readily verified. This also satisfies τ2 = Id and thus is also an isomorphism.

Consider the diagram

C∗(X)⊗ C∗(Y ) C∗(X × Y )

C∗(Y )⊗ C∗(X) C∗(X × Y )

×

T#

×
τ

(9)

The diagram is not commutative in general, but from Proposition 1.6 we conclude

Corollary 1.7. The maps × and T−1# ◦ × ◦ τ are chain homotopic. Similarly, in
the noncommutative diagram

C∗(X)⊗ C∗(Y ) C∗(X × Y )

C∗(Y )⊗ C∗(X) C∗(X × Y )

θ

T#

θ

τ

(10)

the maps θ and τ−1θT# are chain homotopic.

Proof. The maps are natural in X and Y and are the obvious ones,

x0 ⊗ y0 −→ x0 × y0

and

x0 × y0 −→ x0 ⊗ y0
in degeree 0. �
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2. Cross product in homology and the Künneth theorem

Observe that since × : C∗(X)⊗C∗(Y ) −→ C∗(X×Y ) is unique up to homotopy
and satisfies

∂(σ × τ) = ∂σ × τ + (−1)|σ|σ × ∂τ
it descends to a well defined cross product

× : Hp(X)⊗Hq(Y ) −→ Hp+q(X × Y ). (11)

Indeed, choosing representative cycles σ and τ for the homology classes [σ] and [τ ],
it follows that

[σ]× [τ ] := [σ × τ ]

is independent of choices; for instance if σ′ is another choice with σ − σ′ = ∂γ we
have

σ × τ − σ′ × τ = (∂γ)× τ = ∂(γ × τ)

since ∂τ = 0.
Note that if we identify H∗(X × Y ) and H∗(Y ×X) with respect to the isomor-

phism T∗ in section 1.4 above, it follows from Corollary 1.7 that the cross product
is graded commutative

a× b = (−1)|a||b|b× a ∈ H∗(X × Y ).

It is also natural with respect to maps; if f : X −→ X ′ and g : Y −→ Y ′ are
continuous, then

(f∗a)× (g∗b) = (f × g)∗(a× b) ∈ H∗(X ′ × Y ′)
where f × g : X × Y −→ X ′ × Y ′ is the product map.

Also, if A ⊂ X we note that the cross product carries C∗(A) ⊗ C∗(Y ) into
C∗(A × Y ) and therefore C∗(X,A) ⊗ C∗(Y ) into C∗(X × Y,A × Y ). This induces
relative products

× : Hp(X,A)⊗Hq(Y ) −→ Hp+q(X × Y,A× Y )

× : Hp(X,A)⊗Hq(Y,B) −→ Hp+q(X × Y,A× Y ∪X ×B)

Summing over all p and q such that p+ q = n we can consider the total map

× :
⊕
p+q=n

Hp(X)⊗Hq(Y ) −→ Hn(X × Y )

and ask whether it is an isomorphism. The answer, which is that it is always
injective but not necessarily surjective, is quantified by the Künneth theorem, which
we treat next. We will give a completely algebraic version first.

Theorem 2.1 (Algebraic Künneth theorem). Let C∗ and C ′∗ be free chain com-
plexes. Then for each n there are short exact sequences

0 −→
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗) −→ Hn(C∗⊗C ′∗) −→

⊕
p+q=n−1

Tor
(
Hp(C∗), Hq(C

′
∗)
)
−→ 0

(12)
which are natural in C∗ and C ′∗ and which split, though not naturally.

Proof. First consider the case that C ′∗ has trivial differential, so that H∗(C
′
∗) = C ′∗

and ∂⊗ = ∂ ⊗ 1 on C∗ ⊗ C ′∗. The homology groups Hn(C∗ ⊗ C ′∗) then consist of

Hn(C∗ ⊗ C ′∗) =
Ker {∂ ⊗ 1 : (C∗ ⊗ C ′∗)n −→ (C∗ ⊗ C ′∗)n−1}
Im {∂ ⊗ 1 : (C∗ ⊗ C ′∗)n+1 −→ (C∗ ⊗ C ′∗)n}
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and since ∂ ⊗ 1 preserves the direct sum decomposition

(C∗ ⊗ C ′∗)n =
⊕
p+q=n

Cp ⊗ C ′q

it follows that

Hn(C∗⊗C ′∗) =
⊕
p+q=n

Hp(C∗⊗C ′q) =
⊕
p+q=n

Hp(C∗)⊗C ′q ∼=
⊕
p+q=n

Hp(C∗)⊗Hq(C
′
∗)

where we used the Universal Coefficient Theorem, the fact that C ′q is free and the
identification C ′q = Hq(C∗). Since Tor vanishes on free groups, this establishes the
theorem in this case.

Now consider the exact sequence of chain complexes

0 −→ Z ′∗ −→ C ′∗ −→ B′∗−1 −→ 0

We apply the functor C∗ ⊗− (which is exact since all groups involved are free) to
obtain

0 −→ C∗ ⊗ Z ′∗ −→ C∗ ⊗ C ′∗ −→ C∗ ⊗B′∗−1 −→ 0 (13)

which generates the long exact sequence

· · · → Hn+1(C∗ ⊗B′∗−1)
1⊗i→ Hn(C∗ ⊗ Z ′∗)→ Hn(C∗ ⊗ C ′∗)

→ Hn(C∗ ⊗B′∗−1)
1⊗i→ Hn−1(C∗ ⊗ Z ′∗)→ · · ·

(The notation for the connecting homomorphism will be explained in a moment.)
Since Z ′∗ and B′∗ are trivial free complexes, we have

Hn(C∗ ⊗ Z ′∗) =
⊕
p+q=n

Hp(C∗)⊗ Z ′q

and

Hn(C∗ ⊗B′∗−1) =
⊕
p+q=n

Hp(C∗)⊗B′q−1 =
⊕

p+q=n−1
Hp(C∗)⊗B′q

by the first part of the proof.
We claim that the connecting homomorphism Hn(C∗⊗B′∗−1) −→ Hn−1(C∗⊗Z ′∗)

in the long exact sequence above is just the map

1⊗ i :
⊕

p+q=n−1
Hp(C∗)⊗B′q −→

⊕
p+q=n−1

Hp(C∗)⊗ Z ′q

induced by the inclusion B′∗ ⊂ Z ′∗. Indeed, a cycle of degree n in the rightmost group
of (13) is a sum of elements of the form α ⊗ β with ∂α = 0 (since the differential
there is just ∂⊗1). The connecting homomorphism lifts this leftward to α⊗γ such
that ∂γ = β, then applies ∂⊗ which results in α⊗ β again (since ∂α = 0) which is
in C∗ ⊗ Z ′∗, proving the claim.

For each n there is therefore the short exact sequence

0 −→ Coker(1⊗ i)n+1 −→ Hn(C∗ ⊗ C ′∗) −→ Ker(1⊗ i)n −→ 0

extracted from (13). We will obtain the Künneth sequence once we identify these
groups.

Fixing degrees for the moment, consider the sequence

0 −→ B′q −→ Z ′q −→ Hq(C
′
∗) −→ 0.
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We apply Hp(C∗)⊗− which is not exact in general; from the theory of Tor groups
we get the sequence

0 −→ Tor
(
Hp(C∗), Hq(C

′
∗)
)
−→ Hq(C∗)⊗B′q

1⊗i−→ Hq(C∗)⊗Z ′q −→ Hp(C∗)⊗Hq(C
′
∗) −→ 0

which identifies the kernel and cokernel of 1⊗ i. Summing over p+q = n gives (12).
The existence of a splitting for (12) follows from the existence of splittings of (13)

and the analogous sequence for C∗ and will be left as an exercise to the reader. �

Combining the algebraic Künneth theorem with the Eilenberg-Zilber Theorem 1.1
we obtain

Corollary 2.2 (Geometric Künneth theorem). For spaces X and Y , and for each
n, there are short exact sequences

0 −→
⊕
p+q=n

Hp(X)⊗Hq(Y )
×−→ Hn(X×Y ) −→

⊕
p+q=n−1

Tor
(
Hp(X), Hq(Y )

)
−→ 0

which are natural in X and Y and which split, though not naturally.

We get a similar theorem relating groups H∗(X,A), H∗(Y ) and H∗(X×Y,A×Y )
from the relative version of × and the five lemma, but beware that there is not a
general version of the Künneth theorem in which both spaces are replaced by pairs.
Such a theorem holds in certain cases, such as when A and B are both open sets (see
[Bre97]), or in the case that A and B are both basepoints, which gives a Künneth

theorem relating reduced homology groups H̃∗(X), H̃∗(Y ) and H̃∗(X ∧ Y ). (To
prove this version one can just use augmented singular chain complexes for X and
Y .)

3. Cross product in cohomology

Let R be a ring and consider the singular cochains C∗(X;R), C∗(Y ;R). The
map θ : Cp(X × Y ) −→ Cq(X)⊗ C∗(Y ) defines a dual map

θ∗ : Cp(X;R)⊗ Cq(Y ;R) −→ Cp+q(X × Y ;R⊗R),

where if f ∈ Cp(X;R) and g ∈ Cq(Y ;R), the element θ∗f ⊗ g acts on a chain
α ∈ Cp+q(X × Y ) by (θ∗f ⊗ g)(α) = f ⊗ g(θα) ∈ R ⊗R. We can further compose
this with the ring multiplication µ : R⊗R −→ R to get a bilinear map

× := µ ◦ θ∗ : Cp(X;R)⊗ Cq(Y ;R) −→ Cp+q(X × Y ;R)

which we call the cross product on cochains. It is straightforward to verify that the
differential is a graded derivation with respect to this product:

δ(f × g) = δf × g + (−1)|f |f × δg
It thus defines a well-defined cross product on cohomology

× : Hp(X;R)⊗Hq(Y ;R) −→ Hp+q(X × Y ;R)

which is unique since various choices of θ are chain homotopic. If R is commuta-
tive, it follows from Corollary 1.7 that, as for the cross product in homology, the
cohomology cross product is graded commutative:

[f ]× [g] = (−1)|f ||g|[g]× [f ].

One relationship between the cross products in cohomology and homology is the
following. Recall that there is a well-defined map H∗(X;R) −→ Hom(H∗(X);R)
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which evaluates representative cochains on representative chains. It is easy to check
that, if [f ] ∈ Hp(X;R), [g] ∈ Hq(Y ;R), [α] ∈ Hp(X) and [β] ∈ Hq(Y ), then we
have

([f ]× [g])([α]× [β]) = f(α)g(β) ∈ R.
Similar to the situation in homology, the cross product has well-defined relative

and reduced versions:

× : Hp(X,A;R)⊗Hq(Y ;R) −→ Hp+q(X × Y,A× Y ;R)

× : Hp(X,A;R)⊗Hq(Y,B;R) −→ Hp+q(X × Y,A× Y ∪X ×B;R)

× : H̃p(X;R)⊗ H̃q(Y ;R) −→ H̃p+q(X ∧ Y ;R)

There is a distinguished element 1 ∈ H0(X;R) for any space X and ring (with
identity) R, given by the cohomology class of the augmentation cocycle, i.e. the
cocycle which takes the value 1 ∈ R on all 0-simplices in X.

Lemma 3.1. For any a ∈ Hp(Y ;R), the following identity holds:

1× a = p∗Y (a) ∈ Hp(X × Y ;R)

where pY : X × Y −→ Y is the projection.

Proof sketch. Since 1 ∈ H0(X;R) is the image of 1 ∈ H0(x0;R) under the pullback
by the projection map X −→ x0, where x0 ∈ X is any point, it suffices to consider
the case that X = x0 is a single point.

Let a ∈ C∗(Y ;R) = Hom
(
C∗(X);R

)
be a representative cocycle. Then 1× a is

given by composing a with the sequence

C∗(x0 × Y )
θ−→ C∗(x0)⊗ C∗(Y )

ε⊗1−→ Z⊗ C∗(Y ) ∼= C∗(Y ) (14)

whereas p∗Y a is given by composing a with

C∗(x0 × Y )
(pY )∗−→ C∗(Y ). (15)

Easy acyclic model arguments show that (14) and (15) are chain homotopic. �

3.1. Cup product. Having defined the cross product in cohomology, we may con-
struct the cup product as follows. Let

d : X −→ X ×X
be the inclusion of the diagonal. Then for a, b ∈ H∗(X;R) the product

a ` b := d∗(a× b) ∈ H∗(X;R)

defines a natural bilinear map

`: Hp(X;R)⊗Hq(X;R) −→ Hp+q(X;R)

which is graded commutative if R is commutative:

a ` b = (−1)|a||b|b ` a.

Here naturality with respect to a map f : X −→ X ′ means that

f∗(a ` b) = (f∗a) ` (f∗b).

Assuming henceforth that R is a commutative ring with identity, the cup product
makes H∗(X;R) into a graded commutative ring with identity 1 ∈ H0(X;R) as
defined above. To see that 1 is the identity observe that

1 ` a = d∗(1× a) = d∗(p∗Xa) = a
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since the composition of d : X −→ X ×X with the projection pX : X ×X −→ X
is the identity.

Proposition 3.2. The cross product determines the cup product and vice versa
through the formulas

a ` b = d∗(a× b) ∈ H∗(X;R)

a× b = p∗X(a) ` p∗Y (b) ∈ H∗(X × Y ;R).

Proof. Plugging each formula into the other we verify

d∗(p∗Xa ` p
∗
Y b) = (d∗p∗Xa) ` (d∗p∗Y b) = a ` b

on the one hand, and in the other direction

d∗
(
p∗X(a)× p∗Y (b)

)
= d∗(a× 1× 1× b)
= d∗(1× 1× a× b)
= (1× 1) ` (a× b)
= 1 ` (a× b) = a× b.

using Lemma 3.1. Here the quadruple products are in H∗(X × Y ×X × Y ). �

Finally, we mention a more concrete construction leading to the explicit cup
product formula in [Hat02]. Observe that, on the level of cochains, the cup product
is dual to the composition

C∗(X)
d#−→ C∗(X ×X)

θ−→ C∗(X)⊗ C∗(X).

Any chain map C∗(X) −→ C∗(X)⊗C∗(X) which is natural in X and is the obvious
map x0 7−→ x0⊗x0 on 0-chains is called diagonal approximation. An acyclic models
argument analogous to the proof of Proposition 1.6 shows

Proposition 3.3. Any two diagonal approximations are chain homotopic.

Let σ : ∆n −→ X be an n-simplex, and identify ∆n by an ordering of its vertices
[v0, . . . , vn]. We define the front p face of σ to be the p-simplex

Frp(σ) = σ|[v0, . . . , vp] : ∆p −→ X

and the back q face to be the q-simplex

Baq(σ) = σ|[vn−q, . . . , vn] : ∆q −→ X.

Definition 3.4. The Alexander-Whitney diagonal approximation is the chain map
awd : C∗(X) −→ C∗(X)⊗ C∗(X) given on simplices by

Cn(X) 3 σ 7−→
∑

p+q=n

Frp(σ)⊗ Baq(σ) ∈
(
C∗(X)⊗ C∗(X)

)
n

It can be checked that this is a well-defined chain map. It leads to Hatcher’s
explicit definition of the cup product, which coincides with the one defined here
through Proposition 3.3.
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