
Summary of Current Research

Chris Kottke

Introduction

The mathematical questions I find most interesting are those concerning moduli spaces and topological
invariants in geometry—especially involving noncompact, singular or infinite dimensional spaces—which
can be approached through the analysis of PDE. I specialize in methods of geometric microlocal analysis
and index theory, and I have a keen interest in problems arising from mathematical physics, particularly
gauge theory and string theory. Here I give an overview of three of my current research topics.

• The first is the study of the moduli spaces of magnetic monopoles, both on R3 and more general
3-manifolds. A particular goal is to construct a compactification of the moduli space for monopoles
on R3 with nice metric asymptotics, which should lead to a proof of Sen’s conjecture for the L2

cohomology of the moduli space.

• The second is the rigorous development of Dirac operators on the free loop space of a compact
manifold, with the goal of understanding Witten’s index formula for the Dirac-Ramond operator,
whose index computes the genus associated to topological modular forms.

• The last concerns the categories of manifolds with corners and so-called generalized corners, and in
particular the development of a systematic treatment of blow-up in these categories, using ideas from
toric and logarithmic algebraic geometry.

1 Magnetic Monopoles

The moduli space, Mk, of charge k, SU(2) magnetic monopoles on R3 is an interesting space from
a variety of directions. In addition to being a moduli space in 3-dimensional gauge theory, Mk has
several equivalent characterizations, for instance as the space of based, degree k rational maps on CP 1

[Don84], among others [Hit82, Nah82, Hit83]. From a PDE perspective,Mk comprises the stable man-
ifold of static solutions to a system of nonlinear dispersive equations [Man82]. Monopoles are examples
of solitons: though defined in terms of fields on R3, they nevertheless have particle-like characteristics,
such as mass, center of mass, and charge. They behave asymptotically like point magnetic charges in
Maxwellian electromagnetism, but have more complicated structure coming from fact that the struc-
ture group, SU(2), is nonabelian, in contrast to the abelian group U(1) of classical electromagnetism.
Moreover, while the intuitive picture of a charge k monopole as a superposition of individual monopoles
(of unit charge) is approximately valid at large separation distance, it breaks down—in typical soliton
fashion—as the constituent monopoles become close together and lose their individual identities.

Compactification of Mk and metric asymptotics. Much is known about the space Mk: it is
a smooth, noncompact manifold of dimension 4k [JT80, Tau83, Tau85]; moreover it carries a natural
hyperKähler metric [HKLR87] with respect to which it is a complete Riemannian manifold. Its absolute
and relative cohomology were computed in [SS96], but its L2 cohomology—the dimensions of the spaces
of L2 harmonic forms—was conjectured in [Sen94] based on predictions from string theory, but remains
unproved. My ongoing project with Michael Singer, Richard Melrose and Karsten Fritzsch is to construct
a compactification of Mk as a manifold with corners (or possibly generalized corners, see §3) on which
the metric has a complete asymptotic expansion, after which the L2 cohomology will be computable in
terms of the rate of decay of harmonic forms.
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In more detail, monopoles are equivalence classes of solutions to the Bogomolny equation

B(A,Φ) = dAΦ− ?FA = 0, (1.1)

where FA is the curvature of a connection, A, on a principal SU(2) bundle P −→ R3; Φ is a section of
the associated Lie algebra bundle adP ; dA is the covariant exterior derivative; and ? denotes the Hodge
star operator. Solutions are considered which have a suitably prescribed boundary value (A0,Φ0)

on the 2-sphere at infinity (meaning the boundary ∂R3 = S2 of the radial compactification of R3),
and two solutions are considered equivalent if they are intertwined by an element of the gauge group
G0 =

{
g ∈ Aut(P ) : g|∂R3 = 1

}
. The map Φ0 : S2 −→ su(2) ∼= R3 has fixed norm pointwise, and the

homotopy class k = [Φ0] ∈ π2(S2) = Z is an invariant known as the charge of the monopole. The space
of such equivalence classes is the moduli space Mk.

The tangent space, T(A,Φ)Mk, to a monopole is naturally identified with the L2 nullspace of an
elliptic differential operator on sections of the bundle (T ∗ ⊕ R)⊗ adP , and for (a, φ) ∈ T(A,Φ)Mk, the

L2 pairing gk(a, φ) =
∫
R3 |a|2 + |φ|2 determines the Riemannian metric on Mk.

The noncompactness ofMk has to do with the soliton characteristics of monopoles—the noncompact
part of the moduli space is approximated by superpositions of lower charge monopoles, which may go
off to infinity along different directions in R3, as shown in [AH88]. To construct a compactification, we
define ideal monopoles as data which represent the limiting configurations of lower charge monopoles
‘at infinity’ and show that these can be deformed to nearby monopoles in smooth families.

In the first phase of the project we construct the boundary faces of codimension 1 of the compact-
ification; these are indexed by partitions k = k0 + k1 + · · · + kN , where N ≥ 1 and ki > 0 for i ≥ 1.
Geometrically, these boundary hypersurfaces are parameterized by ideal monopoles whose moduli space,
Ik, k = (k0, . . . , kN ) is a nontrivial fiber bundle

Ik −→ C∗N =
{

(ζ1, . . . , ζN ) ∈ (R3)N : ζi 6= ζj 6= 0,
∑
|ζi|2 = 1

}
over the space of distinct, non-zero configurations of N points in R3 up to scaling, with fiber

(Ik)ζ ∼=Mk0 ×M0
k1 × · · · ×M

0
kN

consisting of the spaces of N framed, centered monopoles of charges adding up to k − k0, along with
the space of uncentered framed monopoles of charge k0. Here M0

k is the moduli space of monopoles
with center of mass at 0, or equivalently the quotient, Mk/R3, with respect to the free action by
translations. These ideal monopoles represent the decomposition of a charge k monopole into N lower
charge ‘monopole clusters’ which have gone off to infinity along paths zi = ζi/ε, where ε→ 0, with an
additional charge k0 monopole ‘left behind’ in the interior R3.

Theorem 1.1 ([KS15]). Fix a partition k = k0 + k1 + · · · kN and an ideal monopole ι0 ∈ Ik. There
exists a neighborhood U 3 ι0, a constant ε0 > 0 and a smooth map

Ψ : U × (0, ε0) ↪−→Mk(R3)

which is a local diffeomorphism onto its image, such that Ψ(ι, ε) → ι as ε → 0, with a complete
asymptotic expansion in ε, and the hyperKähler metric splits as a Riemannian product to first order:

Ψ∗(gk) ∼ gk0 ⊕
( N⊕
i=1

gki ⊕ 2πkiη
)

+O(ε)
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with respect to a canonical splitting

T
(
Ik × (0,∞)

) ∼= TMk0 ⊕
( N⊕
i=1

TM0
ki
⊕ R3

)
.

Here we have identified the base C∗N × (0,∞) with the space CN ⊂ (R3)N of configurations (not modulo
scaling) via (ζ1, . . . , ζN , ε) 7−→ (ζ1/ε, . . . , ζN/ε), η is the standard Euclidean metric on R3, and gki is the
L2 metric on the moduli space Mki (possibly restricted to the sub-moduli space of centered monopoles).

In fact, we obtain a complete asymptotic expansion of the metric Ψ∗(gk) in ε, and we can explicitly
compute the subleading order term as well; the result generalizes the asymptotic metric of Gibbons and
Manton in [GM95] for the case ki = 1, i = 1, . . . , N , k0 = 0.

Future work. The next step in the project is to construct the higher codimension faces of the moduli
space. These faces represent configurations of clusters which go off to infinity at different rates which
are not uniformly comparable. The rates may be arranged in a hierarchy: the leading order rate
corresponds to a decomposition of the monopole into clusters of charge k1, . . . , kN ; at the next order the
ki clusters decompose into further subclusters of charge ki1, . . . , kiNi ; and so on. The combinatorics and
geometry (involving the inductive compactifications of the moduli spaces Ik and how these fit together)
is understood, and the analysis required for the gluing is only a slightly more complicated variation on
that involved in Theorem 1.1.

Problem 1.2. Construct all higher codimension corners for the compactification of Mk, and show
that together these classify all deformations of (ideal) monopoles. Show that the resulting universal
deformation space, which is a manifold with (generalized) corners containing Mk, is compact. Finally,
derive from the asymptotic expansions of the metric the rate of decay of harmonic forms at the various
boundary faces, and use this to prove Sen’s conjecture.

Monopoles on other manifolds. In addition to R3, monopoles have historically been studied on
hyperbolic 3-space [Ati84, MS96, MS00], on manifolds with (conformally compact) asymptotically hy-
perbolic ends [Bra89], and to a limited extent in [Flo95b, Flo95a] on manifolds with Euclidean ends
(i.e., isometric to R3 outside a compact set).

I am interested in monopoles on asymptotically conic 3-manifolds. In [Kot15c], I computed the
virtual dimensions of the framed and unframed moduli spaces of monopoles in this setting in terms of
the deformation complex

0 −→ TIdG
D0−→ T(A,Φ)C

D1−→ C∞(X;T ∗X ⊗ adP ) −→ 0. (1.2)

Here C is the configuration space of pairs (A,Φ) on an SU(2) bundle P −→ X, D0 is the differential of
the action of the gauge group G on C, and D1 is the linearization of (1.1). The tangent space to the
monopole moduli space at a smooth point (A,Φ) is the quotient KerD1/ ImD0, while the kernel of D0

and cokernel of D1 represent obstructions to smoothness. The virtual dimension of the moduli space is
the Euler characteristic dim(KerD1/ ImD0)− dim(KerD0)− dim(CokerD1); it coincides with the true
dimension where the space is smooth.

Recall that an unframed monopole is a solution to B(A,Φ) = 0 with no boundary value prescribed,
modulo the full gauge group G = Aut(P ), while a framed monopole is a solution with prescribed
boundary value (A0,Φ0) on ∂X, modulo G0 = {g ∈ G : g|∂X = 1} as discussed above. We denote these
moduli spaces by Nk(X) and Mk(X), respectively. In the classical case, Nk(R3) is the quotient of
Mk(R3) by a free U(1) action.
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In [Kot15c] the complex (1.2) is completed to a Hilbert complex with respect to certain weighted
L2 spaces, and by varying the weight one may consider either framed or unframed deformations.

Theorem 1.3 ([Kot15c]). Let X be an asymptotically conic 3-manifold. There exist natural domains
for D0 and D1 in a range of weighted L2 spaces such that (1.2) is an elliptic Hilbert complex. For
appropriate weights, the virtual dimensions of Nk(X) and Mk(X) are given by the Fredholm index of
the Hodge operator D∗0 +D1 on these domains, giving

vdimNk(X) = 4k + 1
2b

1(∂X)− b0(∂X),

vdimMk(X) = 4k − 1
2b

1(∂X).

This is in agreement with the virtual dimension of Nk(X) computed in [Bra89] for asymptotically
hyperbolic X, a different type of geometry, and it represents the first proof of the classical results
dimNk(R3) = 4k − 1 and dimMk(R3) = 4k, to employ a Callias-type index theorem. The difference
vdimMk(X) − vdimNk(X) = b0(∂X) − b1(∂X) is accounted for by considering the moduli space of
monopole boundary data and the subgroup of G(X)/G0(X) which fixes such data.

Subsequently, in [Oli14], Oliveira proved the existence of an open set in Nk(X) of the predicted
dimension in the case that X has trivial degree 2 cohomology. However, the deformation problem,
which is essentially the question of whether Nk(X) or Mk(X) is smooth at all points, remains open;
see below.

The starting point for the proof of Theorem 1.3 is an index theorem proved in [Kot15a] for operators
of the form D + Ψ where D is a self-adjoint Dirac operator and Ψ is a skew-adjoint potential which
may have nontrivial nullspace at infinity. This improved on the classical theorem [Cal78] of Callias and
its subsequent generalizations in [Ang90, Ang93, R̊ad94, Bun95]. I generalized the Callias theorem in
another direction in [Kot11], replacing D by a pseudodifferential operator and proving a families version
of the index theorem in the spirit of [AS68b] using topological K-theory.

Future work. The deformation problem for Mk(X) and Nk(X) is to prove the triviality of the
obstruction space, which is the cokernel of D1 in (1.2). A straightforward argument shows that the
obstruction space vanishes if X has non-negative Ricci curvature; however, among asymptotically conic
3-manifolds, only R3 has non-negative Ricci curvature, so this is not of much use.

Conjecture 1.4. If b2(X) = 0, then the obstruction space of (1.2) vanishes for a generic set of
asymptotically conic metrics.

Furthermore, it should be possible to extend most of the analytical methods I and my collaborators
have developed above to the setting of monopoles on other spaces and/or with other structure groups
besides SU(2). In particular, Murray and Singer have conjectured in [MS03a] that, for a general compact
connected Lie group G, in the moduli space of appropriately framed G-monopoles over R3 should be
hyperKähler. They indicate that the spaces have dimensions which are multiples of 4, but are unable to
directly analyze the L2 metric. A natural approach would be to produce a Fredholm extension for the
linearization as is done in Theorem 1.3, to which the index theorem in [Kot15a] should apply directly.

Cherkis and Kapustin [CK99, CK01, CK02, CK03] have similar conjectures concerning periodic
monopoles; i.e., monopoles on R2 × S. They consider charge k monopoles with n singular points, (with
structure group U(2) or SO(3)), denoting the moduli space by Mn,k(R2 × S). By way of physical
arguments, they compute the metric asymptotics on these spaces and argue that they are complete
and hyperKähler; in particular for the case k = 2 these give new examples of so-called gravitational
instantons. While there has been progress on this result in the Ph.D. thesis of Foscolo [Fos13], in
which he proved existence and smoothness of the spaces for large values of the mass parameter, the
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completeness of the metric and rigorous computation of the dimension remains open. The index theorem
in [Kot15a] is not directly applicable in this situation since R2×S is not asymptotically conic; however,
it should be possible to generalize the result to spaces with fibered boundary structure, of which R2 × S
is a typical example. Applying such an index result to the monopole deformation complex would give
a rigorous computation of the dimension.

2 Loop spaces

To each smooth manifold M , we may associate the free loop space, LM = C∞(S1;M), considered as an
infinite dimensional Fréchet manifold. The topology of M is reflected in LM in particular through the
transgression homomorphism Hk(M ;Z) −→ Hk−1(LM ;Z) in cohomology, obtained by pulling back via
evaluation to the product S1 × LM and pushing forward via the projection to LM .

While LM itself is is not regarded as a moduli space, there are group actions and equivalence relations
on loops which are natural to consider. For instance, the abelian group U(1), and more generally, the
diffeomorphism group Dff(S1), acts by precomposing on the domain space S1; many of the structures of
interest on LM are equivariant with respect to this action. Rather than work on the extremely singular
and still infinite dimensional quotient space LM/Dff(S1), it is convenient to work equivariantly on LM
itself.

Dirac operators on loop space. In [Wit88] Witten gave a formula for the U(1)-equivariant index of
the (formally defined) ‘Dirac-Ramond operator’, DLM , on the loop space of a compact spin manifold M .
The result was obtained by formally invoking the Atiyah-Segal formula [AS68a] to localize to the fixed
points of U(1) acting by loop rotation—which are the constant loops giving an embedding M ⊂ LM .
Witten observed that for manifolds with p1(M) = 0, the index, as a formal power series in characters of
U(1), is valued in modular forms and computes a topological genus of M . Now known as the ‘Witten
genus,’ this cobordism invariant was later shown to be associated to an extraordinary cohomology
theory called ‘topological modular forms’ (or ‘tmf’), as the Â-genus is associated to topological K-
theory [AHS01, Lur09]. More generally (see [Wit87]), twisted versions of a Dirac operator have formal
indices which compute elliptic genera [Lan88] of M, which are in turn related to the elliptic cohomology
theories defined in [LRS95], of which tmf is a universal version.

Taubes in [Tau89] obtained a rigorous formula for Witten’s index in terms of twisted Dirac operators
on M , by analyzing the formal neighborhood of M ⊂ LM ; however, the analytical tools necessary to
make sense of Witten’s index theorem on the loop space itself have not yet been developed. My project
with Richard Melrose aims to remedy this, by constructing Dirac operators unambiguously as differential
operators on LM .

Lithe regularity. To allow for subsequent analysis of the operators, we take full advantage of the
fact that LM is modeled on a space of smooth functions, and work with geometric objects (functions,
bundles, sections of bundles, etc.) satisfying a strong regularity condition which we call litheness (see
[KM13]). To wit, LM is modeled on the space C∞(S1;Rn), n = dim(M), and the derivative dfp of a lithe
function f ∈ C∞(LM ;R)—which is a priori a distribution in C−∞(S1;Rn) = (C∞(S1;Rn))∗ ∼= T ∗pLM—
is required to be smooth. There are similar conditions on higher derivatives as well as appropriate
definitions for bundles and sections, and the transition diffeomorphisms between smooth charts on LM
is shown to preserve this structure. An example of a lithe function is the holonomy of a U(1)-bundle
with connection on M , considered as a U(1)-valued function on LM . The notion is similar, though
not identical to the definition of ‘super-smooth’ objects appearing in [Bry93]. Another approach to
the regularity problem inherent in pairing the tangent and cotangent bundles on LM was developed
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by Stacey in [Sta08b, Sta08a]; however this involves initially passing to a structure group based on
polynomial loops, which is not invariant under Dff+(S1).

If PSpin −→ M is the principal structure bundle of a spin manifold M , the bundle LPSpin forms a
principal bundle over LM with structure group LSpin = C∞(S1; Spin(2n)). The ingredients for a Dirac
operator are the following:

I) the existence of a loop-spin structure, i.e., a lift L̂P −→ LPSpin over LM with structure group

L̂Spin, the universal central extension of LSpin by U(1).

II) a positive energy representation E of L̂Spin, from which is formed the associated spinor bundle
E −→ LM ,

III) a ‘Clifford action’ c` : TLM −→ End(E), and

IV) a smoothly differentiable connection ∇ on E compatible with the Clifford action.

The theory of central extensions of LG for Lie groups G is well-known, [PS88]; however the standard

construction of L̂G is as a quotient of Hilbert groups, which we avoid in [KM13] by constructing L̂G
inside an algebra of Toeplitz-type pseudodifferential operators.

The existence problem I) for loop-spin structures is topological. Indeed, LPSpin and the central ex-

tension L̂Spin give rise to a lifting bundle gerbe [Mur96, MS03b] on LM with an associated cohomology
class σ ∈ H3(LM ;Z), the nonvanishing of which obstructs the existence of a lift. From a result of
McLaughlin [McL92], if dim(M) ≥ 5 then σ is the transgression of the class 1

2p1(M) ∈ H4(M ;Z). Thus

M is called a string manifold provided it is oriented, spin, and satisfies 1
2p1(M) = 0.

Fusion. The identification of such lifts is a more difficult question, and has to do with the problem
of characterizing those geometric objects, such as U(1) bundles on LPSpin, on loop spaces which are
related via transgression to geometric objects, such as gerbes on PSpin, on the base manifold. In
[Wal12b, Wal10, Wal12c, Wal12a, Wal14], Waldorf identified ‘fusion’ as a key property. Originally
introduced by Stolz and Teichner in [ST] with respect to functions, fusion is a multiplicativity property
involving the identification LM ⊂ I [2]M of loops with pairs in the path space IM = C∞([0, 1];M)
having the same endpoints, and the pullbacks of this space to I [3]M. Here IM −→ M2 is a fibration
with respect to the evaluation map at the endpoints, and I [k]M denotes the k-fold fiber product of
this fibration with itself. For example, a U(1)-bundle L −→ LM is fusion provided its extension by
continuity to I [2]M ⊃ LM is equipped with an isomorphism

π∗12L⊗ π∗23L
∼= π∗13L on I [3]M, (2.1)

which is associative over I [4]M , where πij : I [3]M −→ I [2]M denote the fiber projections. A fusion
function satisfies a direct multiplication identity along the lines of (2.1).

In [KM13] we define a fusive structure to consist of fusion multiplicativity, Dff+(S1)-equivariance
and lithe regularity, and we define H1

fus(LM ;Z) and H2
fus(LM ;Z) to be equivalence classes of fusive

U(1)-functions and fusive U(1)-bundles, respectively.

Theorem 2.1 ([KM13]).

(a) For k = 1, 2, there are ‘enhanced transgression’ isomorphisms Hk+1(M ;Z)
∼=−→ Hk

fus(LM ;Z), which
when composed with the natural map Hk

fus(LM ;Z) −→ Hk(LM ;Z) forgetting the fusive structure,
coincide with the transgression map in cohomology.

(b) If 1
2p1(M) = 0 ∈ H4(M ;Z), then fusive loop-spin structures L̂P −→ LPSpin are classified by

H3(M ;Z). (c.f. [Wal14]).
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In a related but slightly different direction, one can drop the regularity and Diff+(S1) requirements
and try to determine a structure on LM sufficient to characterize the image of transgression from M .
In [KM15b] we do this at the level of Čech cohomology on the continuous loop space LCM = C0(S1;M),
defining loop-fusion cohomology groups Ȟk

lf(LCM ;A), for any degree k ≥ 1 and abelian group A, in

terms of Čech cochains on a good open cover of LCM which are multiplicative with respect to fusion as
well as a second, ‘figure-of-eight’ product on loops:

Theorem 2.2 ([KM15b]). There is an enhanced transgression isomorphism

Tlf : Ȟk(M ;A)
∼=−→ Ȟk−1

lf (LCM ;A) (2.2)

through which the standard transgression map T : Ȟk(M ;A) −→ Ȟk−1(LCM ;A) factors.

Future work. One problem is to refine Theorem 2.2 to the smooth loop space and combine it with
a de Rham version of the enhanced transgression, which would lead to a version of Theorem 2.2 for
differential cohomology:

Problem 2.3. Define an appropriate ‘loop-fusion’ version of differential cohomology Ĥk(LM ;Z) and

extend (2.2) to an isomorphism Ĥk(M ;Z)
∼=−→ Ĥk−1

lf (LM ;Z). Give a geometric interpretation of this
transgression in terms of higher gerbes with connection.

Ingredients II)-IV) for Dirac operators on LM are the subject of ongoing work. The positive energy

representation theory of central extensions L̂G is well-developed (see for instance [PS88] and [TL99]);
however, appropriately regular (i.e., lithe) versions of these representations have yet to be defined, along
with the Clifford action of TLM .

To summarize, in the first phase of our project we will prove

Conjecture 2.4. Provided M is string, LPSpin extends to a fusive principal bundle L̂P −→ LM
with structure group L̂Spin with a lithe connection ∇ which extends the Levi-Civita connection. For

an appropriate positive energy representation E of L̂Spin, there is an associated ‘spinor’ bundle E =

L̂P ×L̂Spin
E which is fusive, and admits a fusive Clifford action of TLM . The resulting Dirac operator

DLM = c` ◦ ∇ is well-defined as a differential operator on lithe sections of E.

The next problem is to understand the nullspace of DLM , using the torus case M = Tn as a guide,
where representation theory can be brought to bear. In [FHT13], Freed, Hopkins and Teleman define G-
equivariantly Fredholm Dirac operators on LG for a group G and use representation theory and families
of such operators to construct an isomorphism to the twisted equivariant K-theory of G; however, these
operators do not include the Dirac-Ramond operator or its variants.

Problem 2.5. Determine the regularity properties of Null(DLM ) for a Dirac operator DLM , and show
that it is finite dimensional at each energy level, i.e., character of the U(1) action. Deduce that it is
U(1) (or more generally Dff+(S1)) equivariantly Fredholm as an operator on lithe sections.

Following this, one would like to understand the topological side of Witten’s index formulas, which
should amount to statements in elliptic cohomology/topological modular forms (see [Lur09] for a survey).
An adequate ‘geometric’ characterization of tmf∗(M) for a manifold M has yet to be carried out,
though it is the subject of speculation and ongoing work by several authors [Seg88, ST04, DH11].
The structures on LM mentioned above, in particular fusion and the Dff+(S1) action, suggest various
intriguing possibilities; indeed, it has been suggested that some kind of Dff+(S1)-equivariant K-theory
of LM could potentially give such a geometric characterization [Bry90, DH11]. The following would be
a major result:
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Problem 2.6.

(a) Determine the relationship between the fusion and Dff+(S1) structures on LM on the one hand and
tmf∗(M) on the other.

(b) Construct a topological index map for the Dirac-Ramond operator in this setting and prove Witten’s
index theorem.

3 Manifolds with generalized corners and blow-up

Manifolds with corners have proved to be a convenient setting for many analysis problems on singular
and/or non-compact spaces. The latter may often be resolved and/or compactified to manifolds with
corners, after which the rich analytical theory developed by Melrose and his students may be applied.
The category of manifolds with corners and so-called ‘b-maps’ has many parallels with the category
of manifolds without boundary. However, there are some subtleties, particularly with respect to fiber
products, and it is becoming apparent that a slightly larger category of manifolds with ‘generalized
corners’ may be useful.

Fiber products in manifolds with ordinary corners. Motivated by a result [Joy12] of Joyce on
fiber products in a category of manifolds with corners under a more restricted class of maps, Richard
Melrose and I posed the following question: Given b-maps f : X −→ Z and g : Y −→ Z between
manifolds with corners, under what conditions is the fiber product

X ×Z Y = {(x, y) : f(x) = g(y)} ⊂ X × Y (3.1)

a smooth manifold with corners?
To answer this question, we borrowed ideas from toric algebraic geometry. To each boundary face

F ⊂ X of a manifold with corners, there is a naturally associated monoid QF ∼= Ncodim(F )
0 , and whenever

G ⊂ F , there is an injective homomorphism QF −→ QG. Together these form what we call a monoidal
complex PX , and every (interior) b-map f : X −→ Y induces a morphism f\ : PX −→ PY of complexes.

Theorem 3.1 ([KM15a]). If f and g are b-transverse interior b-maps and if every monoid in the
complex PX ×PZ

PY is freely generated, then (3.1) is a smooth manifold with corners with the universal
property of the fiber product: any manifold W with interior b-maps to X and Y forming a commutative
square with Z factors uniquely through X ×Z Y .

The b-transversality condition is the analogue in the category of manifolds with corners of the
classical transversality condition in the boundaryless case. Unfortunately, among b-transverse maps the
second condition is rarely satisfied, and then X ×Z Y is too singular to be a manifold with corners.

However, it is a type of space with similar properties: it is stratified by boundary faces of the
same type, and likewise supports a monoidal complex PX×ZY in which the monoids need not be freely
generated. In this case, we showed also in [KM15a] that for any freely generated refinement R −→
PX×ZY (essentially a consistent subdivision of each of the monoids in the target) there exists a unique
resolution, or blow-up of X ×Z Y to a manifold with corners whose complex is isomorphic to R (c.f.
Theorem 3.2 below).

Generalized corners. In response to our result, Joyce developed the category of manifolds with gen-
eralized corners in [Joy15], and showed that it is closed under b-transverse fiber products. A manifold
with generalized corners is a space locally modeled on the spaces Hom(P ; [0,∞)), of monoid homo-
morphisms from a toric monoid P to the (multiplicative) monoid [0,∞). In the case that P ∼= Nk0 is
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freely generated, Hom(P, [0,∞)) ∼= [0,∞)k, and the definition of a manifold with corners is recovered.
Manifolds with generalized corners are quite similar to their classical counterparts, though they allow
for more complicated behavior at the corners. For instance, while a classical corner of codimension
k must be locally modeled by the intersection of k boundary hypersurfaces, a generalized corner may
be modeled by, for example, the space {(x1, x2, x3, x4) : x1x2 = x3x4} ⊂ [0,∞)4, in which 4 boundary
hypersurfaces meet at a point with codimension 3.

There is also an algebro-geometric theory of Gillam and Molcho developed in [GM15] (also written
in response to [KM15a]), in which in which manifolds with corners arise as a natural subcategory of
the category of ‘positive log differentiable spaces’. In this formulation, the ‘b-’ objects associated to
manifolds with corners as defined by Melrose are the natural ones corresponding to a ‘logarithmic
structure’ on such a space, in the sense of [KKMSD73, Kat94].

One of the principal developments of [KM15a] was the generalization of the real blow-up of boundary
faces associated with a refinement of monoidal complexes, and in [Kot15b] I extended this to the setting
of manifolds with generalized corners.

Theorem 3.2 ([Kot15b]). There is a covariant functor X 7−→ PX , (f : X → Y ) 7−→ (f\ : PX → PY )
from the category of manifolds with generalized corners to complexes of toric monoids.

(a) To each (not necessarily freely generated) refinement ψ : R −→ PX , there is a unique blow-up,
i.e., a manifold with generalized corners [X;R] and a blow-down map β : [X;R] −→ X, which is a
diffeomorphism on interiors and such that P[X;R]

∼= R and β\ ∼= ψ.

(b) The blow-up satisfies the following universal property: If the morphism f\ : PY −→ PX associated
to a map f : Y −→ X factors through ψ : R −→ PX , then f factors through a unique map

f̃ : Y −→ [X;R].

(c) Blow-up is stable under pullback; i.e., if f : Y −→ X is any interior b-map, then Y ×X [X;R] ∼=
[Y ;R′], where R′ = PY ×PX

R is a refinement of PY .

Future work. The category of manifolds with generalized corners appears to be rather well-behaved
geometrically, and I expect that it has an important role to play in the theory of moduli spaces, in that
various moduli spaces (in particular, moduli spaces of monopoles) should have natural compactifications
and/or resolutions as manifolds with generalized corners.

However, the utility of generalized corners for problems in analysis will ultimately depend on the
extent to which the analytical tools of Melrose can be extended from ordinary to generalized corners.
One particularly important piece is the following. Recall that a polyhomogeneous function on a manifold
with corners is a function, u, which is smooth on the interior and has a complete asymptotic expansion
at each boundary hypersurface of the form

u ∼
∑

(z,k)∈E

ρz(log ρ)kuz,k,

where uz,k are again polyhomogeneous coefficients on the hypersurface itself, ρ is a boundary defining
function, and E is a suitable discrete subset of C×N0. This class of functions is stable under pullback
by interior b-maps, and even more importantly, is also stable under pushforward (i.e., fiber integration)
with respect to so-called ‘b-fibrations’ (which are the natural generalization of fiber bundles in the
category of manifolds with corners) [Mel92].

Problem 3.3. Is there a well-defined class of polyhomogeneous functions on a manifold with generalized
corners which is stable under pullback by b-maps and pushforward by b-fibrations?
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Such a pullback and pushforward theorem would go a long way toward the development of pseudodif-
ferential operators on manifolds with generalized corners.

One natural question raised by Theorem 3.2 has been posed to me by Dominic Joyce. Namely, the
blow-down map β has the property that its b-differential

β∗ : bTp[X;R] −→ bTβ(p)X

is an isomorphism for all p; such a map might be called b-etále. The following conjecture holds for
manifolds with ordinary corners, as was shown in [KM15a].

Conjecture 3.4. Every b-etále map between manifolds with generalized corners is locally a blow-down
map.

Finally, note that the blow-ups appearing Theorem 3.2 generalize radial blow-up of boundary faces.
However, the utility of radial blow-up in classical setting the is not limited to blow-up of boundary
faces, so it would be of considerable interest to extend the theory above, replacing the stratification of
X by boundary faces by a more general type of stratification. The finite collection of monoids in PX
would have to be replaced by something more complicated. One possibility is the notion of a monoidal
space as defined by Kato [Kat94] in the setting of logarithmic algebraic geometry; see also [GM15] and
[ACUW15].

Problem 3.5. Stratify a manifold X with generalized corners by a collection of submanifolds which
is closed under transverse or clean intersection. What kind of structure, analogous to PX , can you
associate to such a stratification which captures the necessary information to generalize radial blow-up
of these submanifolds?
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