Math 3150 Fall 2015 HW4 Solutions

Problem 1. Prove each of the following is continuous at xg by the e—¢ property.

(a) f(z)= =2.

(b) f(z) =V, zo=0.

(c) f(z) =zsin for z # 0 and f(0) =0, zy = 0.
(d) g(z) = 23, zg arbitrary.

Solution.

(a) Given € > 0, set § = min(1,e/5). Then for all x such that |z — 2| < §, we have

13
£(@) = fwo)l = [o* = 4] =z + 2| [z =2 < 5|o —2| < 57 ==

(b) Note that the domain of f is [0,00). Given & > 0, set § = 2. Then for all z € [0, 00) such that
[z — 0] = || <0,
‘f—O}:\/:E<\/5=E.
(c) Given € > 0 let 6 = . Then |z — 0| < ¢ implies

|f(z) = 0] = |zsinl| < |z] <0 =e.

(d) Given € > 0, let § = min(1,e/(3|xo|* + 3|zo| + 1)). Then |z — x| < & implies
‘933 — mg‘ = |z — x| ‘xQ + zx —l—x%‘
< Jw = ol (I + lol o] + |20 ]?)
< lo = ol ((lzol +1)2 + (lzo] + 1) lzo] + fzol?)
— |z — o (3|m0\2 + 3ao| + 1)

<5<3|$0|2+3|l‘0‘+1) <e

O

Problem 2. For each nonzero rational number z, write x as g where p, ¢ € Z with no common factors

and ¢ > 0, and then define f(z) = %. Also define f(0) =1 and f(x) =0 for all x € R\ Q. Show that f
is continuous at each point of R \ Q and discontinuous at each point of Q.



Solution. First let x¢ be irrational; we show f is continuous at xg. For each ¢ € N, since z is not in
the set { ip € Z} there exists a 6, > 0 such that |zg —y| > ¢, for all y € { ip € Z} Given ¢ > 0,

choose N € N such that 4 < ¢, and let § = min(dy,...,dy). Then if |2 — zq| < 8, it necessarily follows

that x is either irrational or of the rational form g for some ¢ > N. Thus if |x — z¢| < J, we have

1£(@) — flao)| = |f(2)] < % <e.

Now let zg be rational. To show f is discontinuous at xg, it suffices to produce a sequence x,, such

that x,, — xo but f(z,) 4 f(xo). Write zg = 1n reduced form. One way to do this is to let x,, = ”Z;rl.

Then f(x,) = niq — 0, while f(xo) = ; # 0. O

Problem 3. Suppose f is continuous on [0,2] and f(0) = f(2). Prove that there exist z, y in [0, 2]
such that |y — x| =1 and f(x) = f(y).

Solution. Define the continuous function g(x) = f(z + 1) — f(z) on [0,1]. Then a pair z,y such that
ly —z| =1 and f(z) = f(y) is equivalent to a number x such that g(x) = 0.

We examine several cases. First, if g(0) =0 or g(1) = 0, then we already have a solution, so we can
suppose without loss of generality that g(0) # 0 and g(1) # 0.

Note that g(0) < 0 implies f(1) < f(0), and then since f(2) = f(0), it follows that f(2) > f(1)
which is equivalent to g(1) > 0. Similarly, g(0) > 0 implies g(1) < 0. In either case, the interval
[9(0),g(1)] or [g(1),9(0)] contains 0, so by the intermediate value theorem there exists z € (0,1) such

that g(x) = 0. O

Problem 4.

(a) Let F(z) = \/x for > 0. Show f’ is unbounded on (0, 1] but f is nevertheless uniformly continuous
n (0,1].

(b) Show f is uniformly continuous on [1, c0).

Solution.
(a) The derivative is f'(x) = 2\[, which tends to +oo as x — 0, so f’ is unbounded on (0, 1].

On the other hand, f is defined on the compact interval [0, 1], so if f is just continuous (in the
ordinary sense) on [0, 1], then it is automatically uniformly continuous there. It suffices, therefore,
to show that f :[0,1] — R is continuous.

First, suppose g > 0 and € > 0 are given. Let § = mm{?‘mO S‘fog}. Then if |z — xo| < 0, it
follows that x > % and thus /z > ‘ﬁ Then
— x| |z — x|
VT —\/To < < <e
Ve vEl= s < T < v
For 2o = 0, given € > 0, we let 6 = £2. Then if |z — 0| = 2 < J, we have

Vo —0|=vz<e.

Thus f is continuous on [0, 1], and hence uniformly continuous since [0, 1] is compact. The restriction
to any smaller subinterval, such as (0, 1] is also uniformly continuous.

Note that this does not contradict the result that f’ bounded implies f uniformly continuous, since
this result is not an if and only if statement.



(b)

On the interval [1,00), f is again differentiable with f'(z) =

1
21

Alternatively, it is possible to prove directly that f is uniformly continuous on [0, c0), as several of

5 \f However on this interval, | f'(x)| <

2, so f"is bounded. We conclude that f is uniformly continuous on [1,c0).

you did. Here is a nice proof: Given ¢ > 0 let § = 2. Then for any x,y € [0,00) such that |z —y| < 4,
either

) |[Vz+ Y| = Va + /y <e, in which case

Vo— vyl <vo+yy<e

by the triangle inequality, or

2) |[vZ+ /y| > e, in which case

Y| 5
\J?«W
where we multiply and divide by (vz +./y)/(vx+ \/ﬂ) inside the absolute value in the first step. ]
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Problem 5. Let f(z) = zsin (1) for z # 0 and f(0) =

(a)
(b)
()

Observe that f is continuous on R.
Why is f uniformly continuous on any bounded subset of R?

Is f uniformly continuous on R?

Solution.

(a)

For x # 0, f(z) is the multiplication and composition of continuous functions x — z, x — sinx
and r — %, so is continuous. At x = 0 we proved continuity directly in class: given € > 0 let
d = ¢e. Then for |z| <9,

7(@) — JO)] = |osin 2] < Jo] <.

Let A C R be a bounded subset, meaning A C [—R, R] for some R > 0. Since [—R, R] is compact,
f is uniformly continuous on [—R, R], and therefore on any subset thereof.

In fact, f is uniformly continuous on all of R. Note that f is differentiable on the intervals (—oo, —1]

and [1,00), with derivative f'(z) =sin (2) — 2 cos (1). For z in either of these intervals, we have

[f'(@)] < Jsin (3)| + |5 cos (3)] < 2.

It follows that f is uniformly continuous on (—oo,—1] and [1,00). We noted above that f is
uniformly continuous on [—1,1]. It is then a general fact that if a function f is separately uniformly
continuous on a pair of intervals A and B meeting at a single point AN B = {p}, then it is uniformly
continuous on AU B.

To prove this claim, let € > 0 be given. There exist d4,dp > 0 such that if z, 2’ € A with |z — 2/| <
da, or if z,2' € B with |z —2'| < dp, then |f(z) — f(2')] < £/2. Then set § = min(d,0p). If
z,2’ € AU B with |z — 2’| < §, then

|[f(2) = f@)| <e. (1)



Indeed, if z,2' € A or x,2' € B, then (1) follows from the above. In the case that x € A and 2’ € B,
say, it follows that |z — p| < 04 and |2’ — p| < dp, where p = AN B is the common endpoint. Then
(1) follows from

[f(@) = f@)] < If@) = f@ + [f(p) = f(@)] <e/2+¢/2.

O]

Problem 6. For metric spaces (S1,d1), (Se2,dz2) and (Ss,ds), prove that if f: S; — Sy and g : So —
S3 are continuous, then go f : S — S3 is continuous.

Solution. Let U C S3 be an arbitrary open set. Then g~!(U) C Ss is open since g is continuous, and
Y g (U)) = (go f)~"(U) C Sy is open by continuity of f. Thus the inverse image of any open set in
S3 with respect to g o f is open, and it follows that g o f is continuous. O

Problem 7. Show C = {(z1,22) € R? : 2} + 23 = 1} is a connected subset of R?.

Solution. We know that C' is equivalent to the set of points (cos®,sinf) € R? such that 6 € [0,27).
As several students pointed out, the map f : [0,27) — R2, f(6) = (cos ,sin ) is continuous, and the
domain is connected, hence the image C' = f([0,27)) is connected.

Alternatively, we can proceed as follows. We first show that C' is path-connected, meaning that for
any pair of points Z, 7 € C, there is a continuous function (i.e., path) v : [a,b] C R — C such that
+(a) = & and 4(b) = .

Indeed, Z = (cos p,sinfy) and § = (cosby,sin ;) for some 6y, 0; € [0,27), and then

v(t) = (cos((1 — )0 + t6:),sin((1 — t)fg + t61)),0 <t < 1

is a continuous path in C' with v(0) = Z and (1) = 7.

Now we show that any path connected set is connected. Suppose, by contradiction, that C' was
disconnected, by open sets U,V C R?, say. Let £ € CNU and § € C NV (which exist as these sets
are nonemtpy), and let v : [0,1] — C be a continuous path from & to i. Then v~1(U) and v~ (V)
are open sets in R disconnecting [0, 1], which is a contradiction since [0,1] is an interval, and hence is
connected. O



