
Math 3150 Fall 2015 HW4 Solutions

Problem 1. Prove each of the following is continuous at x0 by the ε–δ property.

(a) f(x) = x2, x0 = 2.

(b) f(x) =
√
x, x0 = 0.

(c) f(x) = x sin 1
x for x 6= 0 and f(0) = 0, x0 = 0.

(d) g(x) = x3, x0 arbitrary.

Solution.

(a) Given ε > 0, set δ = min(1, ε/5). Then for all x such that |x− 2| ≤ δ, we have

|f(x)− f(x0)| =
∣∣x2 − 4

∣∣ = |x+ 2| |x− 2| < 5 |x− 2| < 5
ε

5
= ε.

(b) Note that the domain of f is [0,∞). Given ε > 0, set δ = ε2. Then for all x ∈ [0,∞) such that
|x− 0| = |x| < δ, ∣∣√x− 0

∣∣ =
√
x <
√
δ = ε.

(c) Given ε > 0 let δ = ε. Then |x− 0| < δ implies

|f(x)− 0| =
∣∣x sin 1

x

∣∣ ≤ |x| < δ = ε.

(d) Given ε > 0, let δ = min(1, ε/(3 |x0|2 + 3 |x0|+ 1)). Then |x− x0| ≤ δ implies∣∣x3 − x30∣∣ = |x− x0|
∣∣x2 + xx0 + x20

∣∣
≤ |x− x0|

(
|x|2 + |x| |x0|+ |x0|2

)
< |x− x0|

(
(|x0|+ 1)2 + (|x0|+ 1) |x0|+ |x0|2

)
= |x− x0|

(
3 |x0|2 + 3 |x0|+ 1

)
< δ

(
3 |x0|2 + 3 |x0|+ 1

)
≤ ε.

Problem 2. For each nonzero rational number x, write x as p
q where p, q ∈ Z with no common factors

and q > 0, and then define f(x) = 1
q . Also define f(0) = 1 and f(x) = 0 for all x ∈ R \Q. Show that f

is continuous at each point of R \Q and discontinuous at each point of Q.
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Solution. First let x0 be irrational; we show f is continuous at x0. For each q ∈ N, since x is not in

the set
{

p
q : p ∈ Z

}
, there exists a δq > 0 such that |x0 − y| ≥ δq for all y ∈

{
p
q : p ∈ Z

}
. Given ε > 0,

choose N ∈ N such that 1
N < ε, and let δ = min(δ1, . . . , δN ). Then if |x− x0| < δ, it necessarily follows

that x is either irrational or of the rational form p
q for some q > N . Thus if |x− x0| < δ, we have

|f(x)− f(x0)| = |f(x)| < 1

N
< ε.

Now let x0 be rational. To show f is discontinuous at x0, it suffices to produce a sequence xn such
that xn → x0 but f(xn) 6→ f(x0). Write x0 = p

q in reduced form. One way to do this is to let xn = np+1
nq .

Then f(xn) = 1
nq → 0, while f(x0) = 1

q 6= 0.

Problem 3. Suppose f is continuous on [0, 2] and f(0) = f(2). Prove that there exist x, y in [0, 2]
such that |y − x| = 1 and f(x) = f(y).

Solution. Define the continuous function g(x) = f(x + 1) − f(x) on [0, 1]. Then a pair x, y such that
|y − x| = 1 and f(x) = f(y) is equivalent to a number x such that g(x) = 0.

We examine several cases. First, if g(0) = 0 or g(1) = 0, then we already have a solution, so we can
suppose without loss of generality that g(0) 6= 0 and g(1) 6= 0.

Note that g(0) < 0 implies f(1) < f(0), and then since f(2) = f(0), it follows that f(2) > f(1)
which is equivalent to g(1) > 0. Similarly, g(0) > 0 implies g(1) < 0. In either case, the interval
[g(0), g(1)] or [g(1), g(0)] contains 0, so by the intermediate value theorem there exists x ∈ (0, 1) such
that g(x) = 0.

Problem 4.

(a) Let F (x) =
√
x for x ≥ 0. Show f ′ is unbounded on (0, 1] but f is nevertheless uniformly continuous

on (0, 1].

(b) Show f is uniformly continuous on [1,∞).

Solution.

(a) The derivative is f ′(x) = 1
2
√
x
, which tends to +∞ as x→ 0, so f ′ is unbounded on (0, 1].

On the other hand, f is defined on the compact interval [0, 1], so if f is just continuous (in the
ordinary sense) on [0, 1], then it is automatically uniformly continuous there. It suffices, therefore,
to show that f : [0, 1] −→ R is continuous.

First, suppose x0 > 0 and ε > 0 are given. Let δ = min
{

3x0
4 ,

3
√
x0ε
2

}
. Then if |x− x0| < δ, it

follows that x > x0
4 and thus

√
x >

√
x0

2 . Then∣∣√x−√x0∣∣ =
|x− x0|√
x+
√
x0

<
|x− x0|
3
2

√
x0

<
δ

3
2

√
x0
≤ ε.

For x0 = 0, given ε > 0, we let δ = ε2. Then if |x− 0| = x < δ, we have∣∣√x− 0
∣∣ =
√
x < ε.

Thus f is continuous on [0, 1], and hence uniformly continuous since [0, 1] is compact. The restriction
to any smaller subinterval, such as (0, 1] is also uniformly continuous.

Note that this does not contradict the result that f ′ bounded implies f uniformly continuous, since
this result is not an if and only if statement.
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(b) On the interval [1,∞), f is again differentiable with f ′(x) = 1
2
√
x
. However on this interval, |f ′(x)| ≤

1
2
√
1

= 1
2 , so f ′ is bounded. We conclude that f is uniformly continuous on [1,∞).

Alternatively, it is possible to prove directly that f is uniformly continuous on [0,∞), as several of
you did. Here is a nice proof: Given ε > 0 let δ = ε2. Then for any x, y ∈ [0,∞) such that |x− y| ≤ δ,
either

1)
∣∣√x+

√
y
∣∣ =
√
x+
√
y < ε, in which case∣∣√x−√y∣∣ ≤ √x+

√
y < ε

by the triangle inequality, or

2)
∣∣√x+

√
y
∣∣ ≥ ε, in which case

∣∣√x−√y∣∣ =
|x− y|∣∣√x+

√
y
∣∣ < δ

ε
= ε,

where we multiply and divide by (
√
x+
√
y)/(
√
x+
√
y) inside the absolute value in the first step.

Problem 5. Let f(x) = x sin
(
1
x

)
for x 6= 0 and f(0) = 0.

(a) Observe that f is continuous on R.

(b) Why is f uniformly continuous on any bounded subset of R?

(c) Is f uniformly continuous on R?

Solution.

(a) For x 6= 0, f(x) is the multiplication and composition of continuous functions x 7−→ x, x 7−→ sinx
and x 7−→ 1

x , so is continuous. At x = 0 we proved continuity directly in class: given ε > 0 let
δ = ε. Then for |x| ≤ δ,

|f(x)− f(0)| =
∣∣x sin 1

x

∣∣ ≤ |x| < ε.

(b) Let A ⊂ R be a bounded subset, meaning A ⊂ [−R,R] for some R > 0. Since [−R,R] is compact,
f is uniformly continuous on [−R,R], and therefore on any subset thereof.

(c) In fact, f is uniformly continuous on all of R. Note that f is differentiable on the intervals (−∞,−1]
and [1,∞), with derivative f ′(x) = sin

(
1
x

)
− 1

x cos
(
1
x

)
. For x in either of these intervals, we have∣∣f ′(x)

∣∣ ≤ ∣∣sin ( 1x)∣∣+
∣∣ 1
x cos

(
1
x

)∣∣ ≤ 2.

It follows that f is uniformly continuous on (−∞,−1] and [1,∞). We noted above that f is
uniformly continuous on [−1, 1]. It is then a general fact that if a function f is separately uniformly
continuous on a pair of intervals A and B meeting at a single point A∩B = {p}, then it is uniformly
continuous on A ∪B.

To prove this claim, let ε > 0 be given. There exist δA, δB > 0 such that if x, x′ ∈ A with |x− x′| <
δA, or if x, x′ ∈ B with |x− x′| < δB, then |f(x)− f(x′)| < ε/2. Then set δ = min(δA, δB). If
x, x′ ∈ A ∪B with |x− x′| < δ, then ∣∣f(x)− f(x′)

∣∣ < ε. (1)
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Indeed, if x, x′ ∈ A or x, x′ ∈ B, then (1) follows from the above. In the case that x ∈ A and x′ ∈ B,
say, it follows that |x− p| < δA and |x′ − p| < δB, where p = A∩B is the common endpoint. Then
(1) follows from ∣∣f(x)− f(x′)

∣∣ ≤ |f(x)− f(p)|+
∣∣f(p)− f(x′)

∣∣ < ε/2 + ε/2.

Problem 6. For metric spaces (S1, d1), (S2, d2) and (S3, d3), prove that if f : S1 −→ S2 and g : S2 −→
S3 are continuous, then g ◦ f : S1 −→ S3 is continuous.

Solution. Let U ⊂ S3 be an arbitrary open set. Then g−1(U) ⊂ S2 is open since g is continuous, and
f−1(g−1(U)) = (g ◦ f)−1(U) ⊂ S1 is open by continuity of f . Thus the inverse image of any open set in
S3 with respect to g ◦ f is open, and it follows that g ◦ f is continuous.

Problem 7. Show C =
{

(x1, x2) ∈ R2 : x21 + x22 = 1
}

is a connected subset of R2.

Solution. We know that C is equivalent to the set of points (cos θ, sin θ) ∈ R2 such that θ ∈ [0, 2π).
As several students pointed out, the map f : [0, 2π) −→ R2, f(θ) = (cos θ, sin θ) is continuous, and the
domain is connected, hence the image C = f([0, 2π)) is connected.

Alternatively, we can proceed as follows. We first show that C is path-connected, meaning that for
any pair of points ~x, ~y ∈ C, there is a continuous function (i.e., path) γ : [a, b] ⊂ R −→ C such that
γ(a) = ~x and γ(b) = ~y.

Indeed, ~x = (cos θ0, sin θ0) and ~y = (cos θ1, sin θ1) for some θ0, θ1 ∈ [0, 2π), and then

γ(t) =
(

cos((1− t)θ0 + tθ1), sin((1− t)θ0 + tθ1)
)
, 0 ≤ t ≤ 1

is a continuous path in C with γ(0) = ~x and γ(1) = ~y.
Now we show that any path connected set is connected. Suppose, by contradiction, that C was

disconnected, by open sets U, V ⊂ R2, say. Let ~x ∈ C ∩ U and ~y ∈ C ∩ V (which exist as these sets
are nonemtpy), and let γ : [0, 1] −→ C be a continuous path from ~x to ~y. Then γ−1(U) and γ−1(V )
are open sets in R disconnecting [0, 1], which is a contradiction since [0, 1] is an interval, and hence is
connected.
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