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Introduction

We consider the Cauchy problem for the wave equation

utt −∆u = 0,

u(x, 0) = f1(x), ut(x, 0) = f2(x),

in Rn with n ≥ 3 odd, with complex-valued initial data f1, f2. It is well known that under very
general conditions on the initial data there exists a unique solution to this problem (which can be
computed using the Fourier transform), called the free space solution. Suppose we introduce an
obstacle into the space, that is, a bounded domain with smooth boundary, on which the solution to
the wave equation must vanish. The aim of scattering theory is to study how the obstacle affects
the solutions, compared to the free space solution. A prototypical application of this situation
is acoustic obstacle scattering, the scattering of sound waves (which are governed by the wave
equation) by an obstacle in three-dimensional space.

Now, in many physical applications, the obstacle is not directly accessible, and the only in-
formation available is how waves at different frequencies are scattered, by measuring these data
far from the obstacle. Then one can try to gain information about the obstacle using these data.
An important question is whether the measured data uniquely determine the obstacle. This is the
inverse scattering problem, which has been thoroughly studied by mathematicians and physicists,
due to its many applications. The tool employed in this study is the scattering operator, which
relates the solution at a time sufficiently long before the wave hits the object to a time sufficiently
long after; so the scattering operator encodes the measured data, and the goal of inverse scattering
theory is to recover information about the obstacle from properties of the scattering operator.

In this paper, we want to present a construction of the scattering matrix for the acoustic
scattering problem described above, using a group of unitary operators, as done in [1]. We can
associate a group of operators {U(t), t ∈ R} to the wave equation, by letting U(t) map initial data
to the corresponding solution at time t. Since solutions to the wave equation conserve energy,
these operators are unitary in the appropriate norm. In [1], this group is employed in the study
of the scattering operator. The construction relies on representation theory for such a group, so in
Section 1, we start by considering a general group of unitary operators and show the existence of
two different representations, the translation and spectral representations. In Section 2, we study
the wave equation in free space. We define the group {Uo(t)} of unitary operators associated with
this problem and explicitly construct its spectral and translation representations. In Section 3,
we introduce an obstacle into space, at the boundary of which the solution of the wave equation
must vanish. We construct the associated group {U(t)} for this problem and apply the results
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from Section 1 to obtain representations for this group. Finally, we use these results together with
those for the free space case obtained in Section 2 to define the scattering operator for obstacle
scattering.

1 Preliminaries: Representations of a group {U(t)} of unitary operators

We consider the strongly continuous group {U(t)} of unitary operators acting on a Hilbert space
H. We first introduce the notion of an outgoing subspace D+ for {U(t)}.

Definition 1.1. A closed subspace D+ of H is called outgoing subspace for the group {U(t)},
if it satisfies the following conditions:

(i) U(t)D+ ⊂ D+ for t > 0;

(ii)
⋂
U(t)D+ = {0};

(iii)
⋃
U(t)D+ = H.

A space D− is called incoming subspace for {U(t)}, if (i’) U(−t)D− ⊂ D− for t > 0, and (ii) and
(iii) hold for D−.

Our goal is to construct an outgoing translation representation, that is, a representation of U(t)
as right-translation by t, on L2(−∞,∞;N), the space of square-integrable functions on R with
values in an auxiliary Hilbert space N , such that D+ corresponds to L2(0,∞;N).

In a first step, we replace the continuously parameterized group {U(t)} by a single unitary
operator and its powers, by means of the Cayley transform of the infinitesimal generator of the
group {U(t)}.

By Stone’s Theorem [3, Sec.35.1, Thm. 1], the generator A of {U(t)} is skew-selfadjoint, thus
the spectrum of A consists of purely imaginary numbers only, and in particular the values λ = ±1
are in the resolvent set of A. Therefore, the Cayley transform of A,

V = (I +A)(I −A)−1 (1.1)

is a well-defined map from H onto itself. Now, if x ∈ D(V ) = Range(V ) = H, then there is
y ∈ D(A) such that x = (I −A)y, and, applying V , V x = (I +A)y. Thus,

|x|2 = (x, x) = (y −Ay, y −Ay) = |y|2 − (y,Ay)− (Ay, y) + |Ay|2 = |y|2 + |Ay|2 = |V x|2,

having used the skew-symmetry of A, and this shows that V is a unitary operator. We also note that
the Cayley transform of −A is V −1. We define the notion of outgoing subspace for V analogously
as for {U(t)}:

Definition 1.2. A closed subspace D+ of H is called outgoing subspace for V if

(i) V D+ ⊂ D+;

(ii)
⋂
V kD+ = {0};

(iii)
⋃
V kD+ = H.

A closed subspace D− is called incoming subspace for V if (i’) V −1D− ⊂ D−, and (ii), (iii) hold
for D−.
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In the following, we will construct translation and spectral representations for V . First, we
proceed by establishing a series of lemmas that will allow us to eventually recover a representation
for {U(t)} from that for V .

Lemma 1.3. If D is a subspace of H such that U(t)D ⊂ D for all t > 0, then V D ⊂ D, and
vice versa.

Proof. Denote by R(λ,A) = (λI − A)−1 the resolvent of A, and note that we can express
V = R(1, A) +AR(1, A), whence, adding and subtracting R(1, A), we obtain

V = 2R(1, A)− I. (1.2)

Now the resolvent of A has the following Laplace transform representation [3, Sec.34.1 Thm. 4],

R(λ,A) =

∫ ∞
0

e−λtU(t)dt,

which in turn provides the representation

V x = 2

∫ ∞
0

e−tU(t)x dt− x.

Thus, if for x ∈ D, we have U(t)x ∈ D for all t > 0, then the above identity shows V x ∈ D.
To show the converse, we start by showing that if V D ⊂ D, then R(λ,A)D ⊂ D for all λ > 0:

Since the resolvent is an analytic function in λ on the resolvent set (e.g. [3, Sec.17.1, Thm. 3]), it
has a power series expansion

R(λ,A) =

∞∑
m=0

(λo − λ)mR(λo, A)m+1, for |λo − λ|‖R(λo, A)‖ < 1.

Now the Hille-Yosida theorem [3, Sec. 34.2 Thm. 7] states that for λo > 0, ‖R(λo, A)‖ ≤ 1/λo, so
the series expansion holds for |λo − λ| < λo. This expansion shows that if R(λo, A)D ⊂ D, then
also R(λ,A)D ⊂ D for all λ such that |λ− λo| < λo.

Thus, if V D ⊂ D, then (1.2) shows that R(1, A)D ⊂ D, and now we can inductively use the
above argument to see that indeed R(λ,A)D ⊂ D for all λ > 0. Therefore, if x ∈ D, and y ∈ D⊥,
the orthogonal complement of D, then

0 = (R(λ,A)x, y) =

∫ ∞
0

e−λt(U(t)x, y)dt

for all λ > 0. Now uniqueness of the Laplace transform implies (U(t)x, y) = 0, whence U(t)D ⊂ D
for all t > 0. �

Corollary 1.4. We have U(t)D ⊂ D for all t ∈ R if and only if V kD ⊂ D for all k ∈ Z. In either
case, U(t)D = D = V kD for all t and k.

Proof. We apply the lemma to both {U(t), t ≥ 0} and {U(−t), t ≥ 0}, to obtain

U(t)D ⊂ D ∀t > 0 ⇔ V D ⊂ D,
U(−t)D ⊂ D ∀t > 0 ⇔ V −1D ⊂ D.

That U(t)D = D = V kD then follows from the group property of {U(t)} and {V k}, since
M = U(−t)U(t)M ⊂ U(−t)M ⊂M , and similarly for V . �
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Lemma 1.5. A closed subspace D is outgoing (or incoming) for {U(t)} if and only if it is
outgoing (or incoming) for V .

Proof. The equivalence of (i) for V and {U(t)} is just Lemma 1.3. For (ii), we define

P =
⋂
t∈R

U(t)D, P ′ =
⋂
k∈Z

V kD.

We want to show that P = P ′. Note first that U(to)P =
⋂
U(t + to)D = P for all to ∈ R, and

in the same way V kP ′ = P ′ for all k ∈ Z. Thus, by Corollary 1.4, also U(t)P ′ = P ′ for all t and
V kP = P for all k. Since both P and P ′ are subsets of D, we get the sequence of inclusions

P =
⋂
V kP ⊂

⋂
V kD = P ′ =

⋂
U(t)P ′ ⊂

⋂
U(t)D = P,

thus P = P ′, whence we infer the equivalence of the two conditions (ii). For (iii), we proceed
analogously and set

M =
⋃
U(t)D, M ′ =

⋃
V kD.

We need to show M = M ′. Note that both M and M ′ contain D; furthermore, we have again
U(t)M = M for all t and V kM = M for all k, so we can employ Corollary 1.4 to get U(t)M ′ = M ′

and V kM = M , and the sequence of inclusions (using that M , M ′ are closed)

M =
⋃
V kM ⊃

⋃
V kD = M ′ =

⋃
U(t)M ′ ⊃

⋃
U(t)D = M,

and this establishes the equivalence of the two conditions (iii). �

1.1 Translation and spectral representations for V

We start with the construction of an outgoing translation representation for V , presented in the
following theorem, where for a Hilbert space N , we denote by `2(−∞,∞;N) the space of all
sequences {yk, k ∈ Z} such that yk ∈ N for all k, and

∑
‖yk‖2N <∞.

Theorem 1.6. If V is a unitary operator on the Hilbert space H, and D ⊂ H is an outgoing
subspace for V , then H can be represented isometrically as `2(−∞,∞;N) for some auxiliary Hilbert
space N , in such a way that V goes into the right shift operator and D maps onto `2(0,∞;N).
This representation is unique up to an isomorphism of N .

Proof. By assumption on D, we have V D ⊂ D. We take N to be the orthogonal complement
of V D in D, which we write as

N = D 	 V D.

We are going to prove

D =
⊕
k≥0

V kN, and (1.3)

H =
⊕
k∈Z

V kN. (1.4)

Set M =
⊕

k≥0 V
kN . Since V is unitary, we have

V kN = V kD 	 V k+1D.
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Furthermore, property (i) of D implies V k+1D ⊂ V kD for all k. So if k < l, we find

V kN ⊥ V k+1D ⊃ V lD ⊃ V lN,

and we see that the V kN are mutually orthogonal subspaces of D, so that M ⊂ D.
If we assume M is a proper subspace of D, then there is a nonzero x ∈ D	M . So x ⊥ N ⊂M ,

therefore x ∈ V D. We also have x ⊥ V N , and thus x ∈ V 2D = V D 	 V N . Continuing this
argument, we find that x ∈

⋂
V kD, which yields a contradiction since by property (ii) of D, this

would imply x = 0. So we have established (1.3). Using this identity, we get

V kD =
⊕
j≥k

V jN ⊂
⊕
j∈Z

V jN,

for all k, thus
⋃
V kD ⊂

⊕
V jN , and since by property (iii) of D,

⋃
V kD is dense in H and the

right-hand space is a closed subspace of H, (1.4) follows.
To show that for this space N , H is indeed isometrically isomorphic to `2(−∞,∞;N), we

proceed to construct the isomorphism. We note that by (1.4), each x ∈ H can be uniquely
decomposed as

x =
∑
k∈Z

V kyk, yk ∈ N. (1.5)

By orthogonality and the fact that V is unitary, we then get

‖x‖2H =
∑
k∈Z
‖V kyk‖2H =

∑
k∈Z
‖yk‖2N ,

where ‖.‖N denotes the induced norm on N . On the other hand, each sequence {yk} ⊂ N with∑
‖yk‖2N <∞ defines an element of H by (1.5). So the mapping

x 7→ {yk}

is an isometry of H onto `2(−∞,∞;N), and by (1.3), D is mapped onto `2(0,∞;N). Finally, we
check that

V x =
∑

V k+1yk 7→ {yk−1},

so V becomes the right-shift operator under this mapping. �

By means of the Fourier transform, we can obtain the outgoing spectral representation for V , that
is, a representation under which V goes to a multiplication operator. We recall the Hardy space
H2(N) of functions on the unit circle whose kth Fourier coefficients vanish for all k < 0. Another
characterization of this space is that each f ∈ H2(N) is the boundary value (in the L2 sense) of
an analytic function on the unit disk whose square integral over circles centered at the origin is
uniformly bounded (see [4, Sec. 17] for a formal definition and properties).

Corollary 1.7. If D is outgoing with respect to the unitary operator V , then H can be
represented isometrically as L2(0, 2π;N) for some auxiliary Hilbert space N so that V goes into
multiplication by eiθ and D is mapped onto H2(N), the Hardy space of functions on the unit
circle whose kth Fourier coefficients vanish for all k < 0. This representation is unique up to an
isomorphism of N .

Proof. The map

{yk} 7→ f(θ) =
∑
k∈Z

yke
ikθ
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from `2(−∞,∞;N) to L2(0, 2π;N) with inverse

f(θ) 7→ {yk}, yk =
1

2π

∫ 2π

0
f(θ)e−iθdθ (1.6)

is an isomorphism of `2(−∞,∞;N) onto L2(0, 2π;N). It is isometric since

‖f‖2L2 =
1

2π

∫ 2π

0
‖f(θ)‖2Ndθ =

∑
k∈Z
‖yk‖2N = ‖{yk}‖2`2 .

Note that for the right-shift {yk−1} of the sequence {yk},

{yk−1} 7→
∑
k∈Z

yk−1e
ikθ = eiθ

∑
k∈Z

yke
ikθ,

so the right-shift operator corresponds to multiplication by eiθ; also, `2(0,∞;N) clearly gets mapped
onto H2(N). Combining this with the isomorphism from Theorem 1.6, we get the desired isomor-
phism for H. The uniqueness statement follows by using the inverse (1.6) and the corresponding
result for the translation representation. �

Remark. For an incoming subspace D− for V , one can obtain an incoming translation represen-
tation, such that D− is mapped onto `2(−∞,−1;N ′), and in the corresponding spectral repre-
sentation, D− is mapped onto H̄2(N

′), the conjugate Hardy space of functions whose kth Fourier
coefficients vanish for k ≥ 0. The auxiliary Hilbert spaces N and N ′ are in fact unitarily equivalent,
as follows from the following, more general, theorem. For the proof, see [1, Sec.II, Thm. 1.2].

Theorem 1.8. Let V be a unitary operator. If there are two translation representations, say
`2(−∞,∞;N) and `2(−∞,∞;N ′), then N and N ′ are unitarily equivalent. �

1.2 Spectral and translation representations for {U(t)}

We start by using the L2(0, 2π;N) spectral representation for V to obtain a spectral representation
for the group {U(t)}. The spectral representation for the group is constructed using its infinitesimal
generator A: we find an isometry from H onto L2(−∞,∞;N), such that A goes into multiplication
by iσ. Consequently, the operators U(t) will be represented by the multiplication operators eiσt.

We employ the following transform mapping the unit disk in C onto the upper half-plane:

z = i
1− w
1 + w

, with inverse w =
1 + iz

1− iz
. (1.7)

In particular, the circle gets mapped onto the real line via

eiθ 7→ σ = i
1− eiθ

1 + eiθ
.

With this notation, we define a map from L2(0, 2π;N) to L2(−∞,∞;N) by

g(eiθ) 7→ f(σ) =
1√
π

(1− iσ)−1g
(1 + iσ

1− iσ

)
. (1.8)

This map is an isometry, since a change of variables shows that

1

2π

∫ 2π

0
‖g(eiθ)‖2Ndθ =

∫ ∞
−∞
‖f(σ)‖2Ndσ.
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Furthermore, note that

eiθg(eiθ) 7→ 1 + iσ

1− iσ
f(σ),

that is, multiplication by eiθ goes into multiplication by 1+iσ
1−iσ . We denote by M+ and M− the

images of H2(N) and H̄2(N), respectively, under this map. The characterization of elements of the
Hardy spaces as boundary values of analytic functions on the disk and the map (1.7) imply that
maps in M+ are boundary values in the L2 sense of functions analytic in the upper half plane whose
square integral along the lines Imz =const> 0 is uniformly bounded; the analogous statement holds
for M− and functions analytic in the lower half-plane. By the Paley-Wiener theorem [3, Sec.37.7,
Thm. 11], f ∈ M+ is the Fourier transform1, denoted by F , of a square integrable function on
(0,∞), and f ∈ M− is that of a square integrable function on (−∞, 0), and the converse holds as
well. Thus,

M+ = FL2(0,∞;N), M− = FL2(−∞, 0;N).

We summarize these findings in the following lemma.

Lemma 1.9. The map (1.8) is an isomorphism of L2(0, 2π;N) onto L2(−∞,∞;N), mapping
H2(N) onto M+. The multiplicative operator eiθ goes into the multiplicative operator 1+iσ

1−iσ . �

We can now piece the foregoing together to prove the existence of an outgoing spectral repre-
sentation for {U(t)}:

Theorem 1.10. If D is an outgoing subspace with respect to the strongly continuous group
{U(t)} of unitary operators, then H can be represented isometrically as L2(−∞,∞;N) for some
auxiliary Hilbert space N , so that U(t) goes into multiplication by eiσt and D is mapped onto M+.
This representation is unique up to an isomorphism of N .

Proof. By Lemma 1.5, D is an outgoing subspace for V , the Cayley transform of the infinitesimal
generator of the group. Thus, Theorem 1.6 and Corollary 1.7 provide a spectral representation for
V in L2(0, 2π;N), such that D is mapped onto H2(N), and V corresponds to multiplication by eiθ.
The transformation given in Lemma 1.9 maps L2(0, 2π;N) onto L2(−∞,∞;N), H2(N) onto M+,
and the multiplicative operator eiθ into the multiplicative operator 1+iσ

1−iσ . Note that the latter is the

Cayley transform of multiplication by σ on L2(−∞,∞;N) (recall the definition (1.1) of the Cayley
transform of an operator). This operator, multiplication by σ, is the infinitesimal generator of the
group of multiplicative operators {eiσt} on L2(−∞,∞;N). Now the Cayley transform uniquely
determines the generator, and the generator in turn uniquely determines the group, so since the
Cayley transform of the generator of {U(t)} is mapped to that of {eiσt}, we conclude that U(t) is
mapped to eiσt in this representation.

The uniqueness up to isomorphism follows from the corresponding result for the representation
for V : If there are two distinct outgoing spectral representations for {U(t)}, we obtain two distinct
outgoing translation representations for V by reversing the above procedure. Now by Theorem 1.6,
these must be equal up to an isomorphism of N , and going back to the spectral representations for
{U(t)}, these can differ only by an isomorphism. �

1we define the Fourier transform by

F [f ](ξ) = f̂(ξ) =
1

(2π)n/2

∫
Rn

f(x)eξ·xdx,
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We finally obtain an outgoing translation representation for {U(t)}:

Corollary 1.11. If D is an outgoing subspace with respect to the group {U(t)} of unitary
operators, then H can be represented isometrically as L2(−∞,∞;N) for some auxiliary Hilbert
space N so that U(t) goes into right translation by t units and D is mapped onto L2(0,∞;N).
This representation is unique up to an isomorphism of N .

Proof. We apply the inverse Fourier transform which is unitary on L2(−∞,∞;N); by the
Paley-Wiener theorem, the subspace M+ gets mapped onto L2(0,∞;N), and multiplication by eiσt

turns into a right shift. �

Note that again, one can analogously find incoming representations for {U(t)}: In the incoming
spectral representation, D− is mapped ontoM−, and in the incoming translation representation, D−
is mapped onto L2(−∞, 0;N ′). As before for V , it can be shown that the auxiliary Hilbert spaces
N ′ and N for the incoming and outgoing representations, respectively, are unitarily equivalent and
may thus be identified.

2 The wave equation in free space

Now we turn to the study of the wave equation. In this section, we consider the problem in free
space; we will explicitly construct the spectral and translation representations in this case. These
will be used later on to define the scattering operator for the case of scattering by an obstacle in
Rn. We restrict our analysis to odd dimensions n ≥ 3, and consider

utt −∆u = 0, (x, t) ∈ Rn × R, (2.1)

u(x, 0) = f1(x), ut(x, 0) = f2(x), x ∈ Rn, (2.2)

with complex valued initial data f = {f1, f2}. For f = {f1, f2} ∈ C∞c (Rn)2, we define the energy
norm of f by

‖f‖2E =
1

2

∫
|∇f1|2 + |f2|2dx,

and we denote by Ho the completion of C∞c (Rn)2 with respect to this norm. Ho is a Hilbert space,
containing the Cauchy data for the wave equation. It is useful to note that f ∈ Ho means that
f2 ∈ L2(Rn), and f1 ∈ L2

loc(Rn); for the latter property, see [1, Sec. IV.1].

Concerning solvability and properties of solutions of (2.1)-(2.2), we have the following classical
results, see e.g. [2, Sec. 2.4].

Theorem 2.1. Given data f = {f1, f2} ∈ C∞c (Rn)2, the initial value problem (2.1)-(2.2) has a
unique solution u in C∞(Rn) with constant energy in t, that is

1

2

∫
|∇u(x, t)|2 + |ut(x, t)|2dx = ‖f‖2E for all t ∈ R.

Furthermore, we have Huygens’ Principle: for odd n ≥ 3, initial data at a point xo ∈ Rn affects
the solution only on the cone {|x− xo| = t}.

The wave equation also allows for much less regular solutions (see [1, Sec.IV, Thm. 1.4]): Given
a pair {f1, f2} of distributions, there is a unique distribution solution u(t) to (2.1)-(2.2) in the
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following sense: for any φ ∈ C∞c (Rn) the distributional pairing (u(t), φ) is a smooth function in t,
with

(u(0), φ) = (f1, φ),
d

dt
(u(t), φ)

∣∣
t=0

= (f2, φ).

We now construct a group of unitary operators as follows: For every t, we now define the
operator Uo(t) for compactly supported smooth initial data by

Uo(t){f1, f2} = {u(., t), ut(., t)},

i.e., Uo(t) maps initial data to the corresponding solution of the wave equation at time t.
By Theorem 2.1, Uo(t) maps C∞c data into C∞c data and forms a one-parameter group, which

furthermore conserves energy. Hence it can be extended continuously to all of Ho to give a one-
parameter group of unitary operators. Now by Stone’s Theorem, this group has a skew-selfadjoint
infinitesimal generator. Denote the infinitesimal generator of {Uo(t)} by Ao. We take f = {f1, f2} ∈
C∞c (Rn)2 to compute

Aof = lim
t→0

Uo(t)f − f
t

=

(
ut(x, 0)
utt(x, 0)

)
=

(
ut(x, 0)
∆u(x, 0)

)
=

(
0 I
∆ 0

)
f, (2.3)

so on C∞c data, Ao =

(
0 I
∆ 0

)
. It can be shown that Ao on Ho is in fact the closure of this operator

originally defined on compactly supported smooth functions. A proof of this fact using the spectral
representation for Ao (which we construct below) is given in [1].

We proceed by defining the outgoing subspace D+ ⊂ Ho for {Uo(t)}.

Definition 2.2. Let D+ ⊂ Ho be the set of data for which the corresponding solution u
of the wave equation (2.1)-(2.2) vanishes in the forward cone {|x| < t}; we further define the
incoming subspace D− ⊂ Ho as the set of data for which the solution vanishes in the backward
cone {|x| < −t}.

We call f ∈ D+ outgoing data, and f ∈ D− incoming data. Furthermore, we call data f
eventually outgoing, if there is some r such that Uo(r)f is outgoing, i.e., the corresponding solution
of the wave equation is zero on {|x| < t− r}.

The following result states that the spaces defined above are indeed outgoing and incoming
according to Definition 1.1. A proof is given in [1, Sec.IV.2].

Proposition 2.3. D+ is an outgoing subspace according to Definition 1.1 for {Uo(t)}. �

2.1 Spectral and translation representations for {Uo(t)}

We start by finding a unitary spectral representation of Ho for the group {Uo(t)}. More precisely,
for f ∈ Ho, the spectral representation should be a square integrable function on the spectrum of
Ao, given by the scalar product of f with eigenfunctions of Ao

2:

f̃(σ) = (f, φσ)E . (2.4)

2recall that the inner product on Ho is the energy scalar product

(f, g)E =
1

2

∫
∇f1 · ∇g1 + f2g2dx.
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where σ is an eigenvalue and φσ a corresponding eigenfunction.
Since Ao is skew-symmetric, it has purely imaginary eigenvalues iσ with σ ∈ R, with eigenfunc-

tions denoted by φσ solving the eigenvalue equation

Aoφσ =

(
φσ,2

∆φσ,1

)
= iσ

(
φσ,1
φσ,2

)
.

Note that Ao =

(
0 I
∆ 0

)
doesn’t have any eigenfunctions in (L2(Rn))2, but it has the following

bounded eigenfunctions,

φσ,ω(x) = exp(−iσω · x)

(
1
iσ

)
, (2.5)

where ω ∈ Sn−1 is a unit vector. Since for every σ, ω can vary over the whole circle, there is
an infinite number of bounded eigenfunctions for each eigenvalue, and the spectral representation
will depend on ω as well, so we obtain a function on R × Sn−1. Equivalently, to connect to the
construction presented in the previous section, we can view f̃ as a function of σ with values in
N = L2(Sn−1). The scalar product of spectral representations of f, g ∈ Ho, which we denote by
square brackets, then is

[f̃ , g̃] =

∫
Sn−1

∫
R
f̃(s, ω)g̃(s, ω) ds dω.

In order for the spectral representation to be unitary, in view of (2.4) the eigenfunctions need to
be weighted suitably. This is done in the following theorem.

Theorem 2.4. A unitary spectral representation of Ho for {Uo(t)} is given by

f̃(σ, ω) =
(−iσ)(n−3)/2

(2π)n/2
(f, φσ,ω)E (2.6)

for f ∈ Ho, where φσ,ω is the eigenfunction (2.5) of the infinitesimal generator Ao of the group.

Proof. Let f ∈ S2, S being the Schwartz space of smooth functions on Rn with rapidly
decreasing derivatives. We first show that in this case f̃ defined as (2.6) belongs to S as well.
Substituting (2.5) into the formula for f̃ , we obtain

f̃(σ, ω) =
(−iσ)(n−3)/2

(2π)n/2

∫ (
∇f1 · (iσω) + f2

)
exp(iσω · x)dx

= (−iσ)(n−3)/2
(

(−iσ)2|ω|2f̂1(σω) + f̂2(σω)
)
.

Here, f̂ denotes Fourier transform. Since the Fourier transform maps S to itself, and S is closed
under multiplication by polynomials, we see that f̃ ∈ S.

We set h = Aof , and proceed by computing the representation of h. Recalling the definition of
Ao and using the fact that φσ,ω is an eigenfunction with eigenvalue iσ, we get after an integration
by parts

h̃(σ, ω) = (Aof, φσ,ω)E = −(f,Aoφσ,ω)E = iσ(f, φσ,ω)E = iσf̃ .

We see that this representation takes Ao to multiplication by iσ, so we indeed have a spectral
representation for Ao. Next, we show that it is a spectral representation also for {Uo(t)}.

Recall first that Uo(t)f = {u(x, t), ut(x, t)}, where u is the solution to the wave equation with
initial data f . For an eigenfunction φσ,ω, we get Uo(t)φσ,ω = e−iσ(ω·x−t)(1, iσ)T = eiσtφσ,ω. Using
this and the fact that Uo(t) is a unitary operator, we get for the solution u to initial data f ,

ũ(σ, ω, t) = (Uo(t)f, φσ,ω)E = (f, Uo(−t)φσ,ω)E = eiσt(f, φσ,ω) = eiσtf̃ ,
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so we have a representation for the group, such that Uo(t) is mapped into multiplication by eiσt.
Next, we show that the representation (2.6) is isometric. We start out with an integration by

parts in the energy scalar product which yields

(f, φσ,ω)E =
1

2

∫
∇f1 · ∇φ̄σ,ω,1 + f2φ̄σ,ω,2 dx =

1

2

∫
−f1∆φ̄σ,ω,1 + f2φ̄σ,ω,2 dx

=
1

2

∫
−f1(x)(iσ)2eiσω·x + f2(x)(−iσ)eiσω·xdx.

Using this in the definiton (2.6) of f̃ , we get

f̃ =
1

2

1

(2π)(n/2)

∫
−(−iσ)(n+1)/2f1(x)eiσω·x + (−iσ)(n−1)/2f2(x)eiσω·xdx

= −(−iσ)(n+1)/2f̃1 + (−iσ)(n−1)/2f̃2, (2.7)

with

f̃j =
1

2

1

(2π)(n/2)

∫
f1(x)eiσω·xdx =

1

2
f̂j(σω), j = 1, 2. (2.8)

We see from (2.8) that f̃j , j = 1, 2 are even functions in (σ, ω). Therefore one of the two summands
on the right-hand side of (2.7) is even, and the other is odd, whence they are orthogonal in
L2(R× Sn−1), and we find that

‖f̃‖2L2 = ‖(−iσ)(n+1)/2f̃1‖2L2 + ‖(−iσ)(n−1)/2f̃2‖2L2 . (2.9)

Furthermore, since f̃j are even functions, |σkf̃j | are also even, and we get

‖(−iσ)(n+1)/2f̃1‖2L2 = 2

∫
Sn−1

∫ ∞
0
|f̃1|2σn+1dσdω,

analogously for ‖(−iσ)(n−1)/2f̃2‖2L2 . Now we use (2.8) and Plancherel’s Theorem to obtain

‖(−iσ)(n+1)/2f̃1‖2L2 = 2

∫
Sn−1

∫ ∞
0
|1
2
f̂1(σω)|2σn+1dσdω =

1

2

∫
|f̂1(ξ)|2|ξ|2dξ =

1

2

∫
|∇f1(x)|2dx,

and in the same way

‖(−iσ)(n−1)/2f̃2‖2L2 =
1

2

∫
|f2(x)|2dx.

The last two identities together with (2.9) show that we have the isometry of the representation,

‖f̃‖2L2 = ‖f‖2E .

To show that the representation is in fact unitary, it remains to show that the set of representations
of data in S2 is dense in L2(R× Sn−1). To see this, recall that the fact that the two functions on
the right-hand side of (2.7) are of different parity. Consequently, if f̃ is smooth and vanishes for
σ near zero and near infinity, both f̃1 and f̃2 are smooth with compact support, and using (2.8),
this holds for f̂1 and f̂2, such that we can conclude that f1 and f2 belong to S. So all functions f̃
that are smooth and compactly supported in σ represent S data. But these functions are dense in
L2(R× Sn−1), so this completes the proof. �

The inverse Fourier transform with respect to σ of the spectral representation for f yields

k(s, ω) = F−1σ [f̃ ](s, ω) =
1

(2π)n/2

∫ ∞
−∞

f̃(σ, ω)e−iσsdσ ∈ L2(R× Sn−1),
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which is the translation representation of f . The following theorem gives the explicit relation
between a Schwartz function and its translation representation.

Theorem 2.5. Let f ∈ S2, and denote by k its translation representation, i.e., k is obtained
from the spectral representation f̃ by inverse Fourier transformation. Then k is expressed in terms
of f as

k(s, ω) = −∂(n+1)/2
s M1(s, ω) + ∂(n−1)/2s M2(s, ω), (2.10)

with Mj , j = 1, 2, defined as integrals over the hyperplanes x · ω = s

Mj(s, ω) =
1

2

1

(2π)(n−1)/2

∫
x·ω=s

fj(x)dS.

Conversely, we can express fj , j = 1, 2, as the following integrals over spheres:

f1(x) = S(x) :=

∫
Sn−1

h(x · ω, ω)dω, f2(x) = S′(x) :=

∫
Sn−1

h′(x · ω, ω)dω, (2.11)

with

h(s, ω) =
1

(2π)(n−1)/2
(−∂s)(n−3)/2k(s, ω), h′(s, ω) =

1

(2π)(n−1)/2
(−∂s)(n−1)/2k(s, ω). (2.12)

Proof. Let f ∈ S2. Recalling the expressions (2.8), we split the integration and first integrate along
the hyperplane x · ω = s, and then along s ∈ R, to get for j = 1, 2

f̃j(σ, ω) =
1

2

1

(2π)n/2

∫
R

∫
x·ω=s

fj(x)dSeiσsds =
1

(2π)1/2

∫
R
Mj(s, ω)eiσsds = M̂j(σ, ω),

by definition of Mj . Substituting this into (2.7), we get

f̃(σ, ω) = −(−iσ)(n+1)/2M̂1(σ, ω) + (−iσ)(n−1)/2M̂2(σ, ω)

= Fs
[
− ∂(n+1)/2

s M1(s, ω) + ∂(n−1)/2s M2(s, ω)
]
,

where Fs denotes Fourier transform in the variable s. So the inverse Fourier transform of f̃ in the
variable σ is indeed of the form (2.10).

To prove the second part of the theorem, note that the translation representation is unitary
(recall that the scalar product on L2(R× Sn−1) is denoted by square brackets),

(f, g)E = [k, l], (2.13)

if f, g ∈ Ho and k, l are the respective translation representations. This is true since the spectral
representation, as well as the Fourier transform on L2(R× Sn−1) are both unitary. Using density,
it is sufficient to assume g ∈ S2. Thus, we can use the first part of the theorem and express l as in
(2.10), and then integrate by parts to obtain

[k, l] =

∫ ∫
k(s, ω)

(
− ∂(n+1)/2

s M̄ l
1(s, ω) + ∂(n−1)/2s M̄ l

2(s, ω)
)
ds dω

= (2π)(n−1)/2
∫ ∫

h1(s, ω)M̄ l
1(s, ω) + h2(s, ω)M̄ l

2(s, ω)ds dω,

with

h1(s, ω) = − 1

(2π)(n−1)/2
(−∂s)(n+1)/2k(s, ω), h2(s, ω) =

1

(2π)(n−1)/2
(−∂s)(n−1)/2k(s, ω).
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Now we use the definiton of Mj and recombine integration over the hyperplane and integration
with respect to s to integration with respect to x, which yields

[k, l] =
1

2

∫
Sn−1

∫
R
h1(s, ω)

(∫
x·ω=s

ḡ1(x)dS

)
+ h2(s, ω)

(∫
x·ω=s

ḡ2(x)dS

)
ds dω

=
1

2

∫
Sn−1

∫
Rn
h1(x · ω, ω)ḡ1(x) + h2(x · ω, ω)ḡ2(x)dx dω,

which after exchanging the order of integration becomes

[k, l] =
1

2

∫
Rn
S1(x)ḡ1(x) + S2(x)ḡ2(x) dx, (2.14)

with

Sj(x) =

∫
Sn−1

hj(x · ω, ω) dω.

For the left-hand side of (2.13), we integrate by parts in the first term to get

(f, g)E =
1

2

∫
Rn
−∆f1ḡ1 + f2ḡ2 dx. (2.15)

In view of (2.13), the right-hand sides of (2.14) and (2.15) must be equal for all g ∈ S2. Since
Schwartz class data are dense in Ho, we infer

−∆f1 = S1, and f2 = S2. (2.16)

So the second identity of (2.11) is proved. To obtain the first identity, note that

S1 = −∆S

for the function S defined in (2.11)-(2.12), which, combined with the first of the equations (2.16),
gives ∆(f1−S) = 0, so f1−S is a globally harmonic function. But f ∈ S2, and thus the definition
of S shows that S → 0 as |x| → ∞, hence f1 − S → 0 as |x| → ∞, and by the maximum principle
for harmonic functions, we find that f1 − S vanishes identically, and we have obtained the first of
(2.11). �

Corollary 2.6. Let u(x, t) be the solution to the wave equation (2.1)-(2.2) with initial data
f ∈ Ho, and assume that the translation representation k of f is smooth. Then

u(x, t) =

∫
Sn−1

h(x · ω − t, ω) dω, and ut(x, t) =

∫
Sn−1

h′(x · ω − t, ω) dω. (2.17)

Proof. This follows by noting that Uo(t) is now represented by right translation: let f ∈ Ho and
u be the corresponding solution to the wave equation. Using that the spectral representation of
Uo(t) is multiplication by eiσt, we compute

F−1σ [ũ](s, ω, t) =
1

(2π)n/2

∫
eiσtf̃(σ, ω)e−iσsdσ = F−1σ [f̃ ](s− t, ω) = k(s− t, ω).

Now apply the expressions (2.11) to Uo(t)f . �

This translation representation relates to the outgoing and incoming subspaces D± introduced in
Definition 2.2 in the following way. For a proof, see [1, Sec.IV, Thm. 2.3].

Theorem 2.7. The subspaces L2((−∞, 0)× Sn−1) and L2((0,∞)× Sn−1) associated with the
translation representation established above are the incoming and outgoing subspaces D− and D+,
respectively. From this we see in particular that D− and D+ are orthogonal. �
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3 The wave equation in an exterior domain

We now turn to the case of the presence of an obstacle: We consider the wave equation in an exterior
domain G ⊂ Rn, that is, the complement of a closed bounded set, at the boundary of which the
solution to the wave equation must vanish. For some properties and estimates for solutions to this
problem, we refer the reader to [1, Sec. V].

Before we proceed to construct the group {U(t)} for this problem, to which we can apply the
tools developed in Section 1, we introduce some notation.

As initial data, we will have pairs of complex-valued functions f = {f1, f2} defined in G, for
which the energy norm

‖f‖2E =
1

2

∫
G
|∇f1|2 + |f2|2 dx (3.1)

is finite. We denote by H the completion of C∞c (G)2 with respect to this norm. Note that this
space embeds as a subspace into Ho, if we define data in H to be zero outside G.

We also define the space HD as the closure of C∞c (G) in the Dirichlet norm, given by

‖u‖2D =

∫
G
|∇u|2dx.

With this, the energy norm becomes ‖f‖2E = ‖f1‖2D + ‖f2‖2L2(G). Finally, for a subdomain G′ ⊂ G,

we denote by ‖f‖E,G′ the local energy obtained by integrating only over G′ in (3.1).

3.1 The group {U(t)}

We will now construct the operators U(t), which as before will assign to initial data f the corre-
sponding solution of the wave equation in G at time t. We will do so in the opposite direction as
compared to the previous section, by first constructing the operator A which will serve as infinites-
imal generator for the group, and then applying Stone’s Theorem.

Define the operator A as

A =

(
0 I
∆ 0

)
,

with the domain D(A) consisting of all pairs of data f = {f1, f2} for which Af = {f2,∆f1} ∈ H.
That is, f2 ∈ L2(G) ∩HD, and ∆f1 (defined in the distributional sense) belongs to L2(G).

We want A to be generator of a unitary group; to facilitate this, we need the following

Theorem 3.1. The operator A is skew-selfadjoint.

Proof. We need to show that A∗ = −A, and D(A) is dense in H. The latter follows immediately
from the fact that D(A) contains all data in C∞c (G)2. For the former property, we start by showing
that A is skew-symmetric, hence, A∗ is an extension of the operator −A. Let f ∈ D(A), and
consider first g ∈ C∞c (G)2. Then an integration by parts yields

(Af, g)E =
1

2

∫
G
∇f2 · ∇ḡ1 + ∆f1ḡ2 dx =

1

2

∫
G
∇f2 · ∇ḡ1 −∇f1 · ∇ḡ2 dx = −(f,Ag)E . (3.2)

For arbitrary g ∈ D(A), we have g2 ∈ L2(G)∩HD, and thus we can find a sequence {gm} ∈ C∞c (G)2

that converges to g in the H norm (since this space is dense in H)and for which also gm,w → g2 in
HD. So (3.2) holds for all g ∈ D(A), and we find that A is skew-symmetric. In order to show that
in fact A∗ = −A, we recall the definition of the adjoint. Let g ∈ D(A∗), and denote h = A∗g. We
need to show that g ∈ D(A) and h = −Ag. By definition of A∗, for f ∈ D(A),

(Af, g)E = (f, h)E . (3.3)
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By taking f with f1 = 0 and f2 ∈ C∞c (G), this identity becomes

1

2

∫
G
∇f2 · ∇ḡ1 dx =

1

2

∫
G
f2h̄2 dx,

which after integration by parts on the left-hand side yields

(∆f2, g1)L2(G) = (f2, h2)L2(G), (3.4)

whence we conclude that −∆g1 = h2 in the sense of distributions.
If we now take f with f2 = 0, then (3.3) yields

(∆f1, g2)L2(G) = (f1, h1)D. (3.5)

We choose f1 ∈ HD to plug into this identity by means of the Riesz representation theorem as
follows: Fix an arbitrary φ ∈ C∞c G, and let G′ be the support of G; in particular, G′ is compact.
By (??), if ψ ∈ HD, then ‖ψ‖2L2(G′) ≤ C‖ψ‖

2
D. Using the Cauchy-Schwarz inequality, this implies

|(φ, ψ)L2(G)| ≤ C‖ψ‖D,

so the liner functional l(ψ) = (φ, ψ)L2(G) is bounded in the Dirichlet norm. So we can employ the
Riesz representation theorem, which guarantees the existence of f1 ∈ HD such that

(f1, ψ)D = (φ, ψ)0 (3.6)

for ψ ∈ HD. If ψ ∈ C∞c (G), we can integrate by parts to obtain

−(∆f1, ψ)L2(G) = (φ, ψ)L2(G),

so we have −∆f1 = φ in the sense of distributions. Using this on the left-hand side of (3.5), we get

−(φ, g2)L2(G) = (f1, h1)D = (φ, h1)L2(G),

where the last equation was obtained using (3.6). Thus, −g2 = h1. This, together with (3.4), shows
that g = {g1, g2} lies in D(A) and h = A∗g = −Ag, which completes the proof. �

Now we can use Stone’s Theorem, which states that A generates a one-parameter group {U(t)}
of unitary operators, with the following properties:

(i) U(t) is strongly continuous in t;

(ii) U(t)f is strongly differentiable with respect to t if and only if f ∈ D(A), and in this case

d

dt
U(t)f = AU(t)f ; (3.7)

(iii) U(t) maps D(A) onto itself and commutes with A.

Note that if f ∈ D(A) and u(x, t) = U(t)f , then the second component of (3.7) shows that

utt = ∆u

in the distributional sense, so u is a distribution solution to the wave equation with initial data f .
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3.2 Outgoing and incoming subspaces and the scattering operator

We will now define the outgoing and incoming subspaces for {U(t)}. To this end, we fix ρ > 0
such that {|x| < ρ} contains ∂G, and set Dρ

+ = Uo(ρ)D+ and Dρ
− = Uo(ρ)D−, where D± are the

outgoing and incoming subspaces for the free space problem defined in Section 2.
Note that it follows from the definition of D+ that if f ∈ Dρ

+, U(t)f vanishes in the truncated
forward cone {|x| < t+ ρ} for t > 0; analogously, if f ∈ Dρ

−, then U(t)f vanishes in the truncated
backward cone {|x| < −t+ ρ} for t < 0.

These spaces are in fact outgoing and incoming according to Definition 1.1. For a proof, see [1,
Sec. V, Thm. 2.1].

Theorem 3.2. Dρ
+ is an outgoing subspace, i.e., Dρ

+ is a closed subspace with the following
properties:

(i) U(t)Dρ
+ ⊂ D

ρ
+ for t > 0;

(ii)
⋂
U(t)Dρ

+ = {0};

(iii)
⋃
U(t)Dρ

+ = H.

Also, Dρ
− is an incoming subspace, and Dρ

+ and Dρ
− are orthogonal. �

Now the results from Section 1 apply to our situation and secure the existence of an outgoing
translation representation for {U(t)} by L2(−∞,∞;N) with some auxiliary Hilbert spaceN (unique
up to isomorphism), under which Dρ

+ gets mapped onto L2(0,∞;N).
We want to relate the outgoing translation representation for {U(t)} to the translation represen-

tation for {Uo} constructed in the previous section. We first note that by our choice of ρ, for t > 0,
Uo(t) and U(t) act in the same way on the space Dρ

+. Furthermore, by definition of Dρ
+ = Uo(ρ)D+,

we find that in the translation representation for {Uo(t)}, Dρ
+ maps onto L2(ρ,∞;N).

Now suppose that f ∈ Dρ
+ gets mapped to ko in the free space translation representation (which

we now consider as a function of one real variable t with values in the Hilbert space N). Then
Uo(t)f gets mapped to ko(s−t). We will find the corresponding outgoing translation representation
for f . First note that the map

f 7→ k+(s) = ko(s+ ρ)

maps Dρ
+ onto L2(0,∞;N), such that U(t)f = Uo(t)f is taken to ko(s− t+ρ) = k+(s− t) for t > 0,

so
U(t)f 7→ k+(s− t), (3.8)

i.e., U(t) acts as right shift on Dρ
+. Now recall that data f is called eventually outgoing if there is

some r such that Uo(r)f ∈ D+. Then Uo(r + ρ)f ∈ Dρ
+. Extending the above mapping to all such

f while preserving (3.8), this yields an outgoing translation representation for
⋃
U(t)Dρ

+, which we
can further extend by continuity to the closure of this set, which is H by Theorem 3.2. So we have
an outgoing translation representation for {U(t)} on H, given by (3.8).

Now we define the wave operators W±, which in turn will be used to define the scattering
operator for scattering by an obstacle.

Let
W± = strong lim

t→±∞
U(−t)Uo(t). (3.9)

Note that if f ∈ Dρ
+, then by the above observation, U(t)f = Uo(t)f , and hence

U(−t)Uo(t)f = f (3.10)
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for t > 0, so W+ acts as the identity on Dρ
+. Also, if f is eventually outgoing, then for some T > 0,

U(T )f ∈ Dρ
+, and using (3.10), we find that for t > 0,

U(−T − t)Uo(T + t)f = U(−T )U(−t)Uo(t)Uo(T )f = U(−T )Uo(T )f,

whence W+f = U(−T )Uo(T )f . Considering W+ as a map from the free space translation repre-
sentation ko of f to the outgoing translation representation, this corresponds to

ko(s) 7→ ko(s+ ρ) = k+(s), (3.11)

for all eventually outgoing f . Note that for the translation representation, the property of being
eventually outgoing corresponds to ko vanishing for sufficiently small s, say, s < T , since eventually
outgoing means that for some T , Uo(T )f ∈ D+, and Uo(t) goes into right translation. Now
property (iii) of the definition of an outgoing subspace implies that eventually outgoing data are
in fact dense in Ho: Uo(r)f ∈ D+ implies f ∈ U(−r)D+, and conversely, data f ∈ U(r)D+ are
eventually outgoing as U(−r)f ∈ D+. Therefore, W+ has the representation (3.11) for all f ∈ Ho,
and since the mapping (3.11) is onto, we can also conclude that the range of W+ is all of H.

Analogously one can show that W− corresponds to the mapping

ko(s) 7→ k−(s) = ko(s− ρ),

taking the free space translation representation to the incoming translation representation for
{U(t)}, and W− maps Ho onto H.

This allows us to define the scattering operator S as

S = W−1+ W−, (3.12)

which is then a well-defined unitary map from Ho to itself. In terms of the incoming and outgoing
representations, S can be realized as the map

k−(s+ ρ) 7→ k+(s− ρ),

with k−(s) the incoming, k+(s) the outgoing translation representers of f .
Thus, S relates the “initial state”of the solution to the wave equation, i.e., starting out near t =

−∞, to the “final state”, near t =∞, after the scattering process. In many physical applications,
these are data easily accessible by measurement, and the importance of the scattering operator
that encodes these data is in providing a means to study the otherwise inaccessible obstacle: the
goal is to gain information about the scattering object by studying S.

An important question in this context is whether the scattering operator uniquely determines
the obstacle, such that from measurements of the scattered data one may reconstruct the scatterer.
This is the inverse scattering problem, and the machinery developed here that led to the definition of
the scattering operator S is useful in deriving many properties of S that help answer this question.
It turns out that in our case, the answer is affirmative:

Theorem 3.3. The scattering operator uniquely determines the scatterer.

For a proof (as well as for a thorough study of S using the construction presented here), we refer
the reader to Theorem 5.6 in Section V of [1], where two different flavored proofs are presented,
one using an integral operator representation of S, the other using the wave operators W± and the
group {U(t)}.
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