PDE Exam 1 Problems, Spring 2020

Problem 1. Consider the first order PDE

$$
\frac{\partial u}{\partial t}-t \frac{\partial u}{\partial x}=u
$$

for a function $u(t, x)$ defined on the positive quadrant $t \geq 0, x \geq 0$. Suppose that we wish to prescribe both an initial condition

$$
u(0, x)=g(x), \quad x \geq 0
$$

as well as a boundary condition

$$
u(t, 0)=h(t), \quad t \geq 0
$$

Show that these cannot be prescribed independently, and determine a necessary relation that must be satisfied between g and h. (Hint: is u determined by either g or h alone?)

Problem 2. Consider the heat equation

$$
\frac{\partial u}{\partial t}-\Delta u=0
$$

for $t \geq 0$ and \boldsymbol{x} valued in a domain $\Omega \subset \mathbb{R}^{n}$, with the Dirichlet boundary condition

$$
u(t, \boldsymbol{x})=0 \quad \text { for } \boldsymbol{x} \in \partial \Omega
$$

Take u to be real valued.
(a) For a solution u, show that the quantity

$$
\mathcal{E}(t)=\int_{\Omega}(u(t, \boldsymbol{x}))^{2} d \boldsymbol{x}
$$

is a non-negative and monotone decreasing function of t : i.e., $\mathcal{E}(t) \geq 0$ and $\mathcal{E}(s) \leq \mathcal{E}(t)$ whenever $s \geq t$. (Hint: consider the derivative of $\mathcal{E}(t)$.)
(b) Use part (a) to prove uniqueness for solutions to the inhomogeneous problem

$$
\frac{\partial u}{\partial t}-\Delta u=f, \quad u(t, \boldsymbol{x})=0 \quad \text { for } \boldsymbol{x} \in \partial \Omega
$$

where $f=f(t, \boldsymbol{x})$ is an arbitrary function.

Problem 3. Find an explicit solution to the inhomogeneous wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=1, \quad t \geq 0, x \geq 0
$$

subject to the initial and boundary conditions

$$
u(0, x)=\frac{\partial u}{\partial t}(0, x)=0, \quad u(t, 0)=0
$$

Problem 4. Let $u(t, \boldsymbol{x})$ model an acoustic wave solving the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u=0
$$

in 3D (so $(t, \boldsymbol{x}) \in[0, \infty) \times \mathbb{R}^{3}$), and suppose the sound source is localized, so the initial data $u(0, \boldsymbol{x})$ and $\partial_{t} u(0, \boldsymbol{x})$ are identically 0 outside of the unit ball $B=\left\{x^{2}+y^{2}+z^{2}<1\right\}$. For an observer at the point $\boldsymbol{x}_{0}=(3,4,0)$, over what time interval will the sound be heard, i.e., what is the range of t values for which $u\left(t, \boldsymbol{x}_{0}\right)$ may be nonzero?

Problem 5. Determine the set of eigenvalues and eigenfunctions

$$
\Delta \phi=-\lambda \phi
$$

for the Laplacian on a 2 dimensional rectangle $\Omega=\left[0, \ell_{1}\right] \times\left[0, \ell_{2}\right] \subset \mathbb{R}^{2}$ with Neumann boundary conditions

$$
\frac{\partial \phi}{\partial \nu}=\nabla \phi \cdot \nu=0 \text { on } \partial \Omega
$$

where ν denotes the outward unit normal.

Problem 6. Let Ω be the cylinder

$$
\Omega=\left\{(x, y, z): x^{2}+y^{2} \leq 1,0 \leq z \leq \ell\right\} \subset \mathbb{R}^{3}
$$

of height ℓ with a unit circle cross section. Use separation of variables in cylindrical coordinates (r, θ, z) to find solutions to Laplace's equation with Dirichlet boundary condition

$$
\Delta u=0, \quad u=0 \text { on } \partial \Omega
$$

of the form $u(r, \theta, z)=h(r) w(\theta) f(z)$. Recall that cylindrical coordinates are defined by

$$
\begin{gathered}
(x, y, z)=(r \cos \theta, r \sin \theta, z) \\
(r, \theta, z)=\left(\sqrt{x^{2}+y^{2}}, \tan ^{-1}(y / x), z\right)
\end{gathered}
$$

