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1 Lecture I: Classical gauge theory and monopoles

In this lecture we summarize some properties of (singular) monopole moduli spaces that

will be important for subsequent developments. We show how these spaces arise in the

description of BPS field configurations in classical N = 2 supersymmetric Yang–Mills

theory.

1.1 Moduli space of (singular) monopoles

Let G be a compact simple Lie group. Consider Yang–Mills–Higgs theory on R1,3 with

action

Symh = − 1

g2
0

∫
R1,3

[(F, ?F ) + (DX, ?DX)] . (1.1)

Here g0 is the ‘bare’ Yang–Mills coupling. It plays no role in this lecture but will be

important in the next. ( , ) denotes a Killing form, normalized such that the squared-

length of long roots is two.1 F is the curvature (fieldstrength) of a connection A (gauge

field), F = dA+A∧A, on a principal G-bundle P → R1,3. 2 X is a section of the adjoint

1It is given in terms of the Cartan–Killing form by (A,B) = − 1
2h∨ tr( ad(A) ad(B)), where h∨ is the

dual Coxeter number.
2G-bundles over R1,3 are topologically trivial, but later we will remove a line Rt×{~0} from Rt×R3 and

then the G-bundle P over the resulting space might be topologically nontrivial.
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bundle (Higgs field), and DX = dX + [A,X] is the covariant derivative in the adjoint

representation.

Magnetic monopoles are static solutions of the Yang–Mills–Higgs equations which ad-

ditionally solve the Bogomolny equations on R3,

F = ?3DX , (1.2)

and satisfy the following boundary conditions. We choose a regular element3 X∞ of the

Lie algebra g of G. This selects a Cartan subalgebra t ⊂ g, as well as a system of simple

roots αI ∈ t∨ and simple co-roots HI ∈ t, where I = 1, . . . , rnk g. With respect to this

system, X∞ lies in the fundamental Weyl chamber of t. The integer span of the simple

roots is the root lattice Λrt ⊂ t∨, and the integer space of the simple co-roots in the co-root

lattice Λcr ⊂ t. Then, in a suitable gauge, we have

(bc∞) : X = X∞ −
qm

2r
+ · · · , F =

qm

2
ω + · · · , r →∞ . (1.3)

Here qm is the magnetic charge, and ω = sin θdθdφ is the volume form on the two-sphere

with (r, θ, φ) the standard spherical coordinates on R3. Single-valuedness of the transition

function for the bundle on two-spheres at sufficiently large radius, and contractibility of

these two-spheres in R3, implies that qm ∈ Λcr. In other words qm =
∑

I n
I
mHI for some

integers nIm. It is known that solutions exist iff all nIm ≥ 0 and at least one is positive [1].

We are also interested in singular magnetic monopoles; that is, we allow singularities

in the monopole field corresponding, physically, to the introduction of ’t Hooft line defects.

For simplicity, we will consider a single line defect at the origin in R3. The data of the

singularity is given by an element P of the co-character lattice ΛG ∼= Hom(U(1), T ), where

T is the Cartan torus of G with Lie algebra t. 4 Singular monopoles are solutions to (1.2),

satisfying the boundary conditions (1.3) as r →∞, and the boundary conditions

(bc0) : X = − P
2r

+O(r−1/2) , F =
P

2
ω = O(r−3/2) , as r → 0 . (1.4)

Physically, P specifies the embedding of a Dirac monopole (i.e. U(1) monopole) into the

non-abelian gauge group. This type of singularity is electromagnetically dual to a Wilson

line defect, which corresponds to a point source for the electric field in R3. ’t Hooft defects

were first introduced in [2] as a tool for studying phases of quantum Yang–Mills theory.

We follow the conventions of [3]. Singular monopoles of this type were first considered in

the mathematics literature by Kronheimer [4]. A few further references include [5–7]. In

the presence of singularities, the asymptotic magnetic charge qm need no longer sit in the

co-root lattice, but will in general sit in a shifted copy of the co-root lattice: qm ∈ P + Λcr.

3Thus we are restricting to the case of ‘maximal symmetry breaking’ where the centralizer of X∞ is a

Cartan torus.
4We have Λcr ⊆ ΛG ⊆ Λ∨

rt, where Λ∨
rt is the integral dual of the root lattice, sometimes referred to as

the magnetic weight lattice. At the two extremes, Λcr
∼= ΛG when G has trivial center, and ΛG ∼= Λ∨

rt when

G is simply-connected. In general, ΛG/Λcr
∼= Z(G), the center of G, while Λ∨

rt/ΛG ∼= π1(G).
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Define the relative magnetic charge by

q̃m := qm − P− , (1.5)

where P− is the representative of the Weyl orbit of P in the closure of the anti-fundamental

Weyl chamber: 〈αI , P−〉 ≤ 0, ∀αI , where 〈 , 〉 : t∨ × t → R is the natural pairing. This

is a generalization of Kronheimer’s ‘non-abelian’ charge. We have q̃m ∈ Λcr, and hence

q̃m =
∑

I ñ
I
mHI for some integers ñIm. We conjectured in [8] that singular monopole

solutions exist iff ñIm ≥ 0, ∀I, and provided evidence for this in [9] using a string theory

brane construction. This is motivated by the same type of interpretation that Weinberg [10]

gave for ordinary monopoles in terms of fundamental constituents. Existence results for

singular monopoles along these lines but in a slightly different context have been obtained

in [11].

We are only interested in solutions to the Bogomolny equation up to gauge-equivalence.

We distinguish between the group of gauge transformations, G = Aut(P), and the group

of local gauge transformations, G0. The latter is a subgroup of the group of gauge trans-

formations, consisting of those transformations that approach the identity as r → ∞.

Additionally, in the case that a defect is present, we require both G,G0 to leave the charge

P invariant. The moduli space of singular monopoles is defined as

M(P ; qm, X∞) := {(A,X) | F = ?3DX & (bc∞) & (bc0)}
/
G0 . (1.6)

When there are no singularities we get the ordinary (Euclidean) monopole moduli spaces,

M(qm, X∞) := {(A,X) | F = ?3DX & (bc∞)}
/
G0 . (1.7)

These spaces have a number of remarkable properties that will be important in the

following:

• Each admits a hyperkähler metric (away from singular loci in the case ofM). This is

most easily seen by observing thatM,M can be defined as a hyperkähler quotient of

the space of field configurations (A,X), endowed with the flat metric, by the group

of local gauge transformations. The Bogomolny equations are the moment maps in

this construction. We will denote the hyperkähler metrics by gM, gM.

• The ordinary monopole moduli spaces M are smooth and complete [12]. The sin-

gular monopole moduli spaces can (but do not necessarily) have singularities on

co-dimension 4 loci. The presence of singularities is related to the phenomenon of

monopole bubbling [7]. When the charge of the singularity is minimal—in the sense

that its Weyl orbit forms the complete set of weights of a representation of the

Langlands dual group G∨—there is no monopole bubbling and the moduli space is

smooth.5 In the simplest case the singularities are of orbifold type. It is expected

5For example, a ’t Hooft charge of half the simple co-root, P = 1
2
H, in the G = SO(3) theory is minimal:

Its Weyl orbit gives the weights of the two-dimensional representation of SO(3)∨ = SU(2). This is the only

minimal ’t Hooft charge in either the SO(3) or SU(2) theory.
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that singular loci ofM correspond toM’s of lower dimension, such that there can be

a nested sequence of singular loci within singular loci. As far as I know, a complete

picture of the structure of these singularities for general gauge groups with general

’t Hooft charges P has not been developed.

• The dimension ofM(P ; γm, X∞) was computed in [8] by modifying the Callias index

theorem [13] to account for the possibility of singularities. It takes the form

dimRM(P ; qm, X∞) = 4
∑
I

ñIm , (1.8)

in terms of the components of the relative magnetic charge. This builds on earlier

results of [5, 7] for singular monopoles. Furthermore, when defects are absent, it

reduces to the well-known result for ordinary monopoles in terms of the components

of the asymptotic magnetic charge [10, 14].

• These moduli spaces carry a number of isometries. The Lie algebras of Killing fields

are

M : R3 ⊕ so(3)⊕ t ,

M : so(3)⊕ t . (1.9)

The factor of R3 corresponds to the fact that spatial translation of a solution gives

another solution, when defects are absent. However the presence of a defect breaks

translational symmetry. The so(3) likewise originates from spatial rotations, (where

the fixed point of the rotation is the the location of the singularity in the case of

singular monopoles).

The factor of the Cartan subalgebra originates from the action of asymptotically non-

trivial gauge transformations on solutions to the Bogomolny equation. These gauge

transformations can be identified with elements of G/G0 that leave the asymptotic

data invariant. Hence they are gauge transformations that asymptote, as r →∞ to

an element of T , the Cartan torus. The induced isometries ofM,M will be especially

important in the following, as they are related to electric charge. In addition to pre-

serving the metric, they preserve the hyperkähler structure, and hence are generated

by tri-holomorphic Killing fields. We define a Lie algebra homomorphism

G : t→ isomH(M) (or isomH(M)) , (1.10)

as follows. Given a point [(A,X)] ∈M orM, and an element h ∈ t, find the section of

the adjoint bundle, ε, that solves D2ε+ [X, [X, ε]] = 0 and has limr→∞ ε = h.6 Then

the Killing vector G(h) has directional derivative at [(A,X)] given by d
ds(A,X) =

(−Dε, [ε,X]).

The infinitesimal motion generated by the Killing vectors G(h) exponentiates to a

torus action by hyperholomorphic isometries on the moduli space. We will make

6The operator acting on ε is negative-definite, and one can use the boundary conditions (1.3) and (1.4)

to show that the solution is unique.
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the simplifying assumption that all components of the (relative) magnetic charge are

strictly positive, so that the torus action is effective. Since gauge transformations act

on (A,X) in the adjoint representation, it is the magnetic weights, h ∈ Λmw = Λ∨rt,

for which exp[2πG(h)] gives the kernel of this action.

A distinguishing feature of the ordinary moduli spaces is that the Riemannian metric

is reducible. More precisely, the universal cover, M̃, is metrically a product,

M̃(qm, X∞) = R4 ×M0(qm, X∞) , (1.11)

where R4 carries a flat metric and M0 is known as the strongly-centered moduli space,

in the terminology of [15]. The latter is an irreducible, simply-connected hyperkähler

manifold. The moduli space M is a quotient of M̃ by the group of deck transformation

D ∼= π1(M) ∼= Z:

M(γm, X∞) = R3 × R×M0(γm, X∞)

D
. (1.12)

Here the R3 factor is generated by the Killing vectors associated with the R3 translational

isometries, and the R factor is generated by G(X∞).

An important point for us is that the group of hyperholomorphic isometries acting on

the universal cover, and defined by Dg := {exp[2πG(h)] | h ∈ Λmw}, is in general a proper

subgroup of D. Let φ be the isometry generating D. Then, based on the rational map

formulation of monopole moduli spaces [16–18], we show in [19] that for any h ∈ Λmw,

exp[2πG(h)] = φµ(h) , (1.13)

where µ : Λmw → Z is the homomorphism given by µ(h) = (qm, h) = 〈q∨m, h〉. The image

of µ is the subgroup kZ ⊂ Z, where k is the gcd of the components of q∨m along the basis

of simple roots.

We note that, when rnk g > 1, a generic X∞ generates an irrational curve in T , and

G(X∞) generates an irrational direction in the torus of hyperholomorphic isometries. Hence

there is no subgroup of D that acts only on the R factor in (1.12), and one cannot write

(R×M0)/D as the quotient of (S1×M0) by a cyclic group. For charge k monopoles in the

case of g = su(2), however, Dg acts entirely on the R factor and we get the simplification

(R×M0)/D = (S1 ×M0)/Zk, where Zk = Z/(kZ) = D/Dg.

1.1.1 Examples

Some examples of ordinary monopole moduli spaces are

{nIm} =



{1} , M0 = {pt} ,

{2} , M0 = (double cover of) the Atiyah–Hitchin manifold [12] ,

{1, 1} , M0 = Taub-NUT manifold [20, 21] ,

{2, 1} , see Houghton–Irwin–Mountain [22] ,

{1, . . . , 1} , see Gibbons–Manton [23], Lee–Weinberg–Yi [24], Murray [25].

(1.14)
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Regarding the last one, Gibbons and Manton determined the approximate form of the

metric for general charge k su(2) monopoles in an asymptotic region of moduli space where

all fundamental constituents are well separated. This metric develops singularities when it

is continued into the interior ofM. Lee–Weinberg–Yi then showed how a slight modification

of this metric (analogous to the relation between the asymptotic form of the Atiyah–Hitchin

metric and the Taub–NUT metric) leads to a metric that describes an asymptotic region of

{1, . . . , 1} monopole moduli space, and which is non-singular if continued into the interior.

They conjectured that this metric is the exact metric for {1, . . . , 1} monopoles. Murray

then proved this via an analysis of the relevant system of Nahm equations.

Explicit examples of moduli spaces of singular monopoles are mostly restricted to

G = SO(3) (or SU(2)) gauge group. In this case let H be the simple co-root, let the ’t

Hooft charge be P = p
2H, and let the relative magnetic charge be q̃m = k̃H. Then k̃, p ∈ Z

for SO(3) while p ∈ 2Z for SU(2). Then we have

{k̃, p} =


{0, p} , M = {pt} ,

{1, p} , M = Taub-NUT/Z|p| (see Cherkis–Kapustin [6]) ,

{2,±1} , see Dancer [26] .

(1.15)

Notice in the second case that when |p| > 1 the ’t Hooft defect is non-minimal and the

moduli space has singularities. The Z|p| quotient acts on the circle fiber of Taub–NUT,

creating an A|p|−1 singularity at the nut. It was shown in [22] how the eight-dimensional

Dancer manifold arises as a certain infinite-mass limit of the strongly centered moduli space

corresponding to the {2, 1} monopole. Additional examples of su(2) singular monopole

moduli spaces are discussed in [6, 27, 28].

*References not yet included beyond this point*

1.2 Embedding into N = 2 super-Yang–Mills

Supersymmetric Yang–Mills theory with N = 2 supersymmetry is the minimal extension

of Yang–Mills–Higgs theory, (1.1), in which the Bogomolny equation for monopoles arises

as a BPS condition for supersymmetric field configurations. We introduce the theory and

explain the meaning of these statements as we go.

The field content is (A,ϕ, ψA), where A is the gauge field as before, and ϕ is a section of

the complexified adjoint bundle whose fibers are gC (a complex Higgs field). The {ψA}A=1,2,

are two adjoint-valued Weyl fermions. In other words, let SD → R1,3 be the bundle of

Dirac spinors, and let SD = S+ ⊕ S− with S± → (R1,3) is the bundles of positive and

negative chirality Weyl spinors over R1,3. The fibers of the latter are copies of C2. Then

ψ1,2 ∈ Γ(S+ ⊗ ad(P)).7 The action takes the form

S = − 1

g2
0

∫
R1,3

[
(F, ?F ) + (Dϕ, ?Dϕ̄)− 1

4
([ϕ, ϕ̄], ?[ϕ, ϕ̄]) + fermions

]
, (1.16)

7The “N = 2” refers to the fact that there are two such fermions.
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Table 1. Lorentz representations

(j1, j2) name indices example

(1/2, 0) (+)-ch. Weyl spinor α, β = 1, 2 ψAα

(0, 1/2) (−)-ch. Weyl spinor α̇, β̇ = 1̇, 2̇ ψ̄α̇A

(1/2, 1/2) vector µ, ν = 0, 1, 2, 3 Aµ

(1, 0) i.s.d. two-form 1
2 [(1 + i?)F ]µν

(0, 1) i.a.s.d. two-form 1
2 [(1− i?)F ]µν

where we have suppressed the terms involving the fermions. Here the bar on ϕ̄ refers to

the natural complex conjugation on gC.

In addition to the usual invariance under the Poincaré group of isometries of Minkowski

space, this action is invariant under additional symmetries called supersymmetries. These

symmetries are generated by a doublet of constant, Granssmann-valued, Weyl spinors,

ξA, and they map bosons to fermions and vice-versa. To describe this, it is convenient

to trivialize the tangent bundle and spinor bundles over R1,3 using canonical bases of

sections, and work with the components of fields along such bases. The components form

representations of the Lie algebra of the structure group of Minskowski space, spin(1, 3).

We have spin(1, 3) ∼= sl(2,C) ∼= sl(2) × sl(2), so unitary irreps are labeled by a pair of

spins. We have summarized the important representations and corresponding notation in

Table 1.

The first two are the two Weyl representations, which are each of dimension two. Note

that for spin(1, 3), these representations are conjugate to each other and the bar refers to

this complex conjugation. Meanwhile for SU(2)R the doublet is a pseudo-real representa-

tion. We define conjugation to lower the index. This means we take the conjugate spinor

to transform in the dual vector space, as we’ll be using Einstein summation conventions to

sum over repeated indices. The (1/2, 1/2) is the vector representation carrying the usual

µ, ν indices, and (1, 0) and (0, 1) are the imaginary-self-dual and imaginary-anti-self-dual

two-forms.

Supersymmetry is a symmetry transformation of the action that relates fields in differ-

ent Lorentz representations, so there are a couple important tensor product decompositions

to know:

(1/2, 0)⊗ (1/2, 0) = (0, 0)⊕ (1, 0) : ψ ⊗ ψ′ 7→ ψψ′ ⊕ ψσµνψ , (σµν = i(?σ)µν) ,

(0, 1/2)⊗ (1/2, 0) = (1/2, 1/2) : ψ̄ ⊗ ψ′ 7→ ψ̄σ̄µψ .

(1.17)

The σ’s in these expressions are Clebsch–Gordon coefficients for the corresponding decom-

position.
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The supersymmetry variation that leaves the action invariant, δξS = 0, takes the

following form:

δξϕ = −εABξAψB , δξAµ = ξ̄Aσ̄µψ
A + c.c. , δξψ

A = − i
2

(σµνξA)Fµν + · · · .

(1.18)

Here, εAB is the SU(2)R invariant tensor.

By Noether’s theorem, any continuous symmetry leads to a conserved charge. The

Noether charges associated with ξAα are called a supercharges and denoted QAα . Using

the flat, Z2-graded Poisson bracket on phase space that follows from this action, one can

compute the algebra of the conserved charges. The result is the following:

{QAα , Q̄β̇B}+ = −2iδAB(σµ)αβ̇Pµ , {QAα , QBβ }+ = −2iεABεαβZ̄ . (1.19)

Here Pµ are the Noether charges associated with translation symmetry of the theory. In

particular −P0 = H, the Hamiltonian of the theory. Z, meanwhile, is known as the central

charge. It takes the form

Z =
2

g2
0

∫
S2
∞

(iF − ?F, ϕ) =
4πi

g2
0

(qm, ϕ∞)− 〈qe, ϕ∞〉 , (1.20)

where the magnetic charge is the first chern class and consistent with the previous ex-

pression, qm := 1
2π

∫
S2
∞
F , and the electric charge q∨e := 2

g2
0

∫
S2
∞
?F , is the Noether charge

associated with asymptotically nontrivial gauge transformations.8

The algebra (1.19) is part of the N = 2 super-Poincaré algebra, which is a Z2-graded

extension of the ordinary Poincaré algebra. We write s = seven + sodd, where the odd part

is generated by the Q’s and the even part is

seven = poin(1, 3)⊕ su(2)R ⊕ u(1)R ⊕C . (1.21)

The su(2)R generates the R-symmetry we discussed earlier, while the C factor is associated

with the central charge (which is a central element of the algebra). There is also an internal

u(1)R symmetry in the classical theory, but this is anomalous in the quantum theory, so

will not be of particular importance for us.

The algebra of the Q’s implies a bound on the Hamiltonian. This can be most easily

extracted by introducing the linear combinations:

RAα = ζ1/2QAα + ζ−1/2(σ0)αβ̇Q̄
β̇A , T Aα = ζ1/2QAα − ζ−1/2(σ0)αβ̇Q̄

β̇A , (1.22)

where ζ is a phase, |ζ| = 1. Then one computes

{RAα ,RBβ }+ = −4iεαβε
AB(H + Re(ζ−1Z)) . (1.23)

8qe has been defined to sit in the dual of the Cartan, t∨ because electric charges naturally define a

coupling of a charged particle to a gauge field via the line-integral: 〈qe,
∫
A〉 along the worldline of the

particle.
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It follows from this and the reality properties of the R’s that

H + Re(ζ−1Z) ≥ 0 . (1.24)

This is called a BPS bound after Bogomolny, Prasad, and Sommerfield, and we define

BPS field configurations (A,ϕ, ψA) as those field configurations such that the bound is

saturated. Equivalently, when the bound is saturated the R charges must vanish, and

BPS field configurations are those that are invariant under the subset of supersymmetries

corresponding to the R’s: δ
(R)
ξ (A,ϕ, ψA) = 0.

Setting ϕ = ζ−1(Y + iX), one finds that the BPS field configurations must satisfy

Fij − εijkDkX = 0 , DiDiY + [X, [X,Y ]] = 0 , Fi0 = DiY , (1.25)

(and the fermions must vanish). On such a configuration, the BPS bound and the central

charge can be used to obtain the expression for the energy:

H =
4π

g2
0

(qm, X∞) + 〈qe, Y∞〉 . (1.26)

But what is ζ? There are two cases to consider.

1. The first is framed BPS field configurations. In this case we allow the field configura-

tions to have singularities consistent with the presence of a defect, like before. The

defects can be defined to preserve half of the supersymmetry—namely the R-type

supercharges, and thus ζ is specified by the defect. For example, we say that we have

an ’t Hooft defect of type ζ (at r = 0), denoted Lζ(P ), by demanding that

ϕ = iζ−1 P

2r
+ · · · , F =

P

2
sin θdθdφ+ · · · . (1.27)

Framed BPS field configurations are those satisfying (1.25) as well as this singularity

condition at r = 0.

2. The second is vanilla BPS field configurations. This is the case when defects are not

present. Then, for every choice of ζ we have a bound, and hence, the only bound

that can be saturated is the strongest bound. Thus one must vary ζ to achieve the

strongest bound, and this is at the value ζ = ζvan := −Z/|Z|.

We close with a few comments about the system of BPS equations, (1.25), which

describes dyons. We observe that the first equation is just the Bogomolny equation for

monopoles, and that this can be solved independently of Y and A0, the time component

of A. Then, given a (singular) monopole (A,X), and a boundary value Y∞, the solution

to the second equation for Y will be unique. Finally the last equation then determines the

electric field in terms of Y , and thus in terms of the monopole solution. In particular, it

follows that the electric charge, is a t∨-valued function on the moduli space: qe :M→ t∨

(or M→ t∨).
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2 Lecture 2: Quantum SYM and Dirac Operators on M

Recall last time we had the N = 2 super-Poincaré algebra of Noether charges. In particular

BPS field configurations preserve the R-type supercharges and saturate the Bogomolny

bound on the Hamiltonian. The relevant part of the algebra is

{RAα ,RBβ }+ = −4iεABεαβ(H + Re(ζ−1Z)) , (2.1)

where Z is the central charge. This was a purely classical discussion with the algebra being

defined by the Poisson (or more generally, Dirac) bracket on phase space.

2.1 Quantum generalities

To pass to the quantum theory, we promote the Z2-graded Poisson bracket to a Z2-graded

(anti)-commutator, { , }± → [ , ]± = i{ , }±, put hats on everything, and call it a day:

[R̂Aα , R̂Bβ ]+ = 4εABεαβ(Ĥ + Re(ζ−1Ẑ)) . (2.2)

More seriously, in the quantum theory we have a Hilbert space of states, and conserved

charges in the classical theory are promoted to time-independent operators acting on this

Hilbert space. The Hilbert space forms a unitary representation of the symmetry alge-

bra generated by these operators. Hence we can gain some general understanding of the

structure of the space of states simply by studying the representation theory of the super-

algebra. The discussion must be divided according to whether or not defects are present,

as the superalgebra in question depends on this.

Let’s start with the standard case without defects. Then we have the full N = 2

superalgebra, where the odd elements can be taken as the R̂’s and the T̂ ’s. As the N = 2

algebra contains the usual Poincaré algebra, we first have the usual Fock space construction

of multi-particle states built on tensor products of states in the one-particle Hilbert sub-

space.9 The one-particle Hilbert subspace can be decomposed into unitary representations

of supersymmetry following the Wigner little group approach.10 First we Lorentz boost to

the rest frame of the particle, where the eigenvalue of the Hamiltonian is the mass. Then

the algebra of the R̂’s and T̂ ’s restricted to a mass eigenspace is

[R̂Aα , R̂Bβ ]+ = 4εABεαβ(M − |Z|) ,
[T̂ Aα , T̂ Bβ ]+ = 4εABεαβ(M + |Z|) ,
[R̂Aα , T̂ Bβ ]+ = 0 . (2.3)

where Z is the eigenvalue of the central charge, and we’ve set ζ = ζvan = −Z/|Z|. The R’s

and T ’s thus form two commuting Clifford algebras and representations are constructed by

acting with lowering operators on a highest weight Clifford vacuum. Then there are two

9See e.g. Streater-Wightman or Duncan.
10For further details see Greg Moore’s PiTP lectures on BPS states and wall-crossing.
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types of representations. Long representations for which M > |Z| and short representations

for which M = |Z|. In the latter case the R’s must be represented by zero. States in

short representations are called BPS states. We denote the subspace of BPS states as

HBPS ⊂ H1-part ⊂ H.

The presence of a defect breaks the algebra of conserved charges down to the sub-

superalgebra generated by the R-type supercharges (with ζ given by the specification of

the defect). Hence the Hilbert space of states is modified by the presence of the defect

and is denoted HLζ when line defects of type ζ are present. We can again diagonalize

the Hamiltonian and central charge, and then look at the Wigner little group. Long

representations have mass strictly greater than the bound, M > −Re(ζ−1Z) while short

representations saturate the bound, such that theR’s are represented by zero. Framed BPS

states are defined as states in these short representations11, and the subspace of framed

BPS states is denoted HBPS
Lζ
⊂ HLζ .

In order to gain a more detailed description of BPS states, one must go beyond these

kinematical considerations and consider the dynamics of the theory. There are two time-

honored approximation schemes. One is the low-energy effective (Wilsonian) approach.

When augmented by supersymmetry and other considerations, Seiberg and Witten showed

that this leads to exact results for e.g. the possible spectrum of BPS states. The other

approach is the weak-coupling or semiclassical expansion, taking the classical monopole

configurations as starting point. This leads to the geometric description of BPS states

we’re after. We’ll want to compare results from both approaches so we start with a brief

synopsis of the low-energy/Seiberg–Witten analysis.

2.2 Seiberg–Witten approach

The first point is that the quantum theory has a space of vacua called the Coulomb branch,

and denoted B. In the classical theory the space of vacua can be labeled by the gauge-

inequivalent asymptotic values of ϕ that minimize the potential. This space persists in the

quantum theory because supersymmery forbids quantum corrections from lifting it. In the

quantum theory we parameterize the space by complex coordinates u that can be taken as

the expectation values of the gauge-invariant casimirs associated with the complex Higgs:

{us} rnk g
s=1 , with us = 〈 tradj(ϕ

s)〉.

In the low-energy effective approach one identifies the massless and massive degrees of

freedom over a given u, and ‘integrates out’ the massive ones. The masses originate from

the adjoint action of the Higgs field. Over a generic vacuum the Higgs vev determines a

root decomposition of the complexified Lie algebra

gC = tC ⊕
⊕
α∈∆

Eα ·C , (2.4)

11The terminology of ‘framed’ originates from a quiver construction for such states in which the presence

of line defects leads to framed quivers. It has nothing to do with the notation of ‘framing’ the asymptotic

monopole data.
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where ∆ is the set of nonzero roots and Eα the corresponding raising or lowering operator.

Denoting the collection of adjoint-valued fields by A = (ϕ,A, ψA), we can correspondingly

expand in components {AI ,A(α)} along the Cartan and the root directions respectively.

The AI are the massless d.o.f.’s while the A(α) acquire masses in terms of u.

Schematically, the low-energy effective action Seff = Seff [AI ] is defined through the

path integral ∫
[DA]eiS[A] =

∫
[DAI ]eiSeff [AI ] , (2.5)

Here [DA] denotes a measure on the space of gauge-inequivalent field configurations and

S[A] is the N = 2 action. On the right side we are to have carried out the path inte-

gral over the massive modes along the root directions. This integral can be regulated and

computed perturbatively in the coupling g0 using standard techniques in QFT. At each

order in the small coupling expansion the result can be expressed in terms of a derivative

expansion. Typically, one is restricted to perturbative results in both of these expansions,

however in this case supersymmetry strongly constrains the form of the two-derivative

effective action, (which is the leading set of terms in the derivative expansion). Letting

AI = (aI , AI , ψAI), where aI are the Cartan components of the complex Higgs field, N = 2

supersymmetry in fact determines the two-derivative effective action up to a single mero-

morphic functional F = F [aI ; g0] known as the prepotential. The weak-coupling expansion

of the two-derivative action is then controlled by the weak-coupling expansion of this pre-

potential.

In a remarkable feat, Seiberg and Witten were able to determine the prepotential for

a class of N = 2 theories exactly, using various consistency requirements. The solution

gives the functions aI(u) and aD,I(u) in terms of period integrals of an auxiliary Riemann

surface. This implicitly gives a relation between aD and a, and the prepotential is defined

by aD,I = ∂F/∂aI . Solutions have since been obtained for many more theories, including

the whole class of theories we consider here.

One can inquire about the form of the N = 2 algebra in this language. The spectrum of

the central charge operator can in fact be computed exactly. It is labeled by electromagnetic

charges:

γIm :=
1

2π

∫
S2
∞

F I , γe,I = τIJ

∫
S2
∞

?F J , where τIJ :=
∂2F

∂aI∂aJ
, (2.6)

where F I = dAI , and the eigenvalues are

Zγ(u) = aD,I(u)γIm + aI(u)γe,I . (2.7)

The result is exact because the form of the higher derivative terms in the effective action,

which are not incorporated by the SW solution, is constrained by supersymmetry in such

a way that they cannot contribute to the central charge. Then by the Bogomolny bound

this gives the mass of BPS states when such states are present in the spectrum.
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Before describing this further we introduce a slightly more invariant language. The

aI(u) should be viewed as local coordinates on B; recall they were defined in terms of the

root decomposition specified by ϕ∞. They do not extend over all of B. Globally, super-

symmetry dictates that B has a certain type of geometry known as special Kähler. The

electromagnetic charge is a section of a local system Γ → B over B. This means we have

a fibration of charge lattices over B that is locally trivial but globally can undergo mon-

odromy. So the picture is the following... The lattice is equipped with a symplectic pairing

⟪ , ⟫ which is invariant under these transformations. (The monodromy transformations

are electromagnetic duality transformations.) The aI(u) are systems of special coordinates

on B that give a local trivialization of the lattice into magnetic and electric components.

In the trivialization described above we can identify these components with

Γu ∼= Λmw ⊕ Λrt
∼= t⊕ t∨ , (2.8)

and the symplectic pairing is given in terms of the pairing between t∨ and t:

⟪γ1, γ2⟫ = 〈γ2,e, γ1,m〉 − 〈γ1,e, γ2,m〉 . (2.9)

Then the Hilbert subspace of vanilla BPS states is fibered over B, and can be graded

by electromagnetic charges. Furthermore, the action of the T supersymmetries produces a

four-dimensional representation of the Clifford algebra tensored with the representation of

the Clifford vacuum. The former is called the half-hypermultiplet, it is associated with the

center of mass degrees of freedom of the one-particle state. The latter is associated with

the internal degrees of freedom and, based on the general principles discussed earlier, it is

a representation space for the algebra of the Wigner little group, so(3)⊕ su(2)R.

The mass of these states is |Zγ(u)|. The linearity of Zγ(u) with respect to the charge

(along with conservation of charge) implies, by the triangle inequality, that BPS states are

stable as we vary u, except at marginal stability walls, where the central charges associ-

ated to two potential constituents align. These are co-dimension one walls defined by the

conditions:

W (γ1, γ2) :=

u ∈ B
∣∣∣∣Zγ1(u)Zγ2(u) ∈ R+ , &

γ1 + γ2 ,= γ

⟪γ1, γ2⟫ 6= 0,

(HBPS
0 )u,γ1,2 6= 0

 . (2.10)

Upon crossing such a wall, states can decay into two constituents (or two groups of con-

stituents) with charges γ1 and γ2. Note the last two conditions ensure that the bound

state could have existed in the first place. The nonzero pairing is required in order for the

constituents to bind, while the last condition ensures that the constituents are available in

the spectrum. As one approaches the wall W (γ1, γ2), we have a point dyon picture in the

low energy effective theory that describes the situation. The two constituents are bound

together, but as the wall is approached, the binding strength becomes weaker and weaker,

until the bound state radius goes to infinity and this ceases to be a single-particle state.
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Similarly the Hilbert subspace of framed BPS states is fibered over B and can be

graded by electromagnetic charges. Likewise, the little group analysis allows these spaces

to be arbitrary so(3)⊕ su(2)R representations. The mass of framed BPS states is given by

−Re
[
ζ−1Zγ(u)

]
. Theses states are also generically stable, but there are co-dimension one

marginal stability walls. They are defined by a single ‘halo’ charge and given as

W (γh) =
{

(u, ζ) | ζ−1Zγh
(u) ∈ R− , (HBPS

0 )u,γh
6= 0
}
. (2.11)

In this case we have the core halo picture in which the framed BPS state is viewed as the

bound state of a bunch of vanilla particles (making up the halo) to an infinitely massive

core particle (the low-energy effective description of the line defect). As we approach the

wall, the halo particles become less and less bound.

Finally, their are explicit formulae for how indices associated with these spaces change

when a wall is crossed. The indices are defined as traces over the appropriate Hilbert space,

of (−1)F where F is the fermion number. This can be generalized to virtual characters

that keep track of spin information as well. Then, for example, the vanilla WCF is given

by the Kontesvich–Soibelman formula, but we will not need these details for this talk.

2.3 The semiclassical approach

Let us turn now to the semiclassical approach. The starting point is the classical BPS field

configurations we had from last time:

Fij − εijkDkX = 0 , DiDiY + [X, [X,Y ]] = 0 , Fi0 = DiY , (2.12)

The idea here is to quantize fluctuations around the monopole and work perturbatively in

g0. Schematically, we write

A(t, ~x) = Amono(~x;Zm(t)) + g0δA . (2.13)

Here the Zm are known as collective coordinates, and contain both bosonic and fermionic

degrees of freedom:

Zm(t) = (zm(t), ηm(t)) (2.14)

where m,n,= 1, . . . ,dimM. The {zm} are local coordinates on the moduli space—these

are the original collective coordinates of Manton—while the {ηm} parameterize the fibers

of a certain index bundle over the moduli space, which turns out to be isomorphic to the

tangent bundle. They are related to the zm by supersymmetry.

Meanwhile the δA term represents field fluctuations parameterizing the directions or-

thogonal to the moduli space in the full field configuration space. One uses a saddle point

approximation to carry out the path integral over these degrees of freedom, resulting in a

supersymmetric quantum mechanics for the collective coordinates. The supersymmetries

of the quantum mechanics descend directly from the preserved R-supersymmetries of the

background.
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The canonical commutation relations for the ηm, [ηm, ηn]+ = 2(gM)mn give a Clifford

algebra, which, on a hyperkähler manifold, can be represented in one of two equivalent

ways. We can either view states in the quantum mechanics as sections of the Dirac spinor

bundle on M (or M), or, if we choose a complex structure, they can be viewed as (0, ∗)-
forms.

We are not interested in general states, however, but BPS states. These are states that

are annihilated by the supercharges. In the quantization via spinors, for example, one12 of

the supercharges turns out to be represented as a Dirac-like operator, Q̂ = i /D
Y

. However

this is not the ordinary Dirac operator, but rather a modification of the ordinary Dirac

operator where we subtract a term involving Clifford contraction with a certain vector

field. The vector field is a tri-holomoprhic Killing associated to the vev of the secondary

Higgs field. Recall the map G from the Cartan subalgebra into the space of triholomorphic

Killing vectors. Then, at leading order in the semiclassical expansion, the X ,Y appearing

here are given by X = X∞ and Y = 4π
g2
0
Y∞.

We will also need the electric charge operator. Recall that, classically, it was a function

on the moduli space. In the quantum theory it is promoted to..., where LG(hI) is the

Kossman–Lie derivative on spinors along a basis of triholomorphic Killing vectors. Since

these are properly normalized to generate periodic isometries, the eigenvalues of the electric

charge operator will take values in the root lattice. One can show that the supercharge

and electric charge operator commute, and thus the kernel of Q̂ can be decomposed into

eigenspaces of the electric charge operator.

Hence we define the semiclassical space of framed as follows.

HP,X ,Y,qm,qe := ker
(qe)
L2

(
/D
Y
M(P ;qm,X )

)
. (2.15)

The vanilla analog requires a bit of extra work, due to the center of mass factor.

Recall that the universal cover of the moduli space is M̃ = R4 ×M0. There are no L2

normalizable zero-modes of the Dirac-like operator on this space due to the center of mass

factor. This is physically expected however. We can decompose the spinor bundle on the

total space into a spinor bundle on each factor, and we expect that the spinors on the

R4 should be plane-wave normalizable, as they represent one-particle states. What we

demand is L2-normalizability on the strongly centered space, along with an appropriate

equivariance such that they give well-defined spinors on the quotient M.

Without going into the details, let me just state the result. Decompose Y as Y =

Ycm + Y0, where Ycm is the projection of Y along X and Y0 is perpendicular to qm with

respect to the Killing form. The latter might sound strange, but the reason we do this is

because of the rather peculiar identity gM(G(X ),G(Y)) = (qm,Y).13 Hence if Y0 is Killing

12It follows from the supersymmetry algebra that if one of the supercharges annihilates a state then all

of them do, so it is sufficient to consider just this one.
13This can be demonstrated from the definition of G in terms of the action on (A,X) by gauge transfor-

mations, the definition of the metric in terms of integration over R3 of bosonic zero modes, and integration

by parts.
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orthogonal to qm, then G(Y0) will be metric orthogonal to G(X ) and will hence restrict to a

Killing vector onM0. Note this decomposition of Y is always possible because (non-empty)

monopole moduli spaces will never have an X and qm that are Killing orthogonal—that

would correspond to a zero energy monopole.14

Dually, decompose the electric charge as qe = qcm
e + q0

e , where qcm
e is the component

of the electric charge parallel to the dual of the magnetic charge, and q0
e annihilates X :

〈q0
e ,X〉 = 0. Then the centered semiclassical vanilla BPS space is

(HscBPS
0 )X ,Y0,qm,qe :=

[
ker

(q0
e )

L2

(
/D
Y0

M0(qm,X )

)]Zk
, (2.16)

where k is again the gcd of the components of the dual of the magnetic charge along the

simple roots. What’s happening with the equivariance condition is that quantization of

electric charge ensures that states15 descend to the quotient of of the universal cover by

the kZ subgroup of the group of deck transformations associated to gauge transformations

(the hyperholomorphic T -action). However, an additional kZ/Z equivariance condition

must be imposed to make sure they descend to well-defined states onM. The equivariance

condition specifies qcm
e up to integer shifts by q∨m. Hence, for each state in (2.16) we have an

infinite tower of dyons corresponding to qe → qe + nq∨m, n ∈ Z. We call this the Julia–Zee

tower since it generalizes the tower of standard su(2) dyons with magnetic charge 1, first

discovered by Julia and Zee, and reduces to this in that special case.16

In the above semiclassical descriptions of BPS states we used the spinor language.

If we use the isomorphism with (0, ∗)-forms, then we would instead talk about the L2

cohomology of a Dolbeault-like operator. Specifically:

for framed: ∂̄ − iG(Y)(0,1) ∧ on L2(Λ∗T (0,1)(M)) , (2.17)

for vanilla: ∂̄ − iG(Y0)(0,1) ∧ on L2(Λ∗T (0,1)(M0)) , (2.18)

where G(h)(0,1) is the anti-holomorphic part of the one-form obtained by dualizing G(h)

with respect to the metric. (One can again restrict the cohomology to electric charge

eigenspaces, and in the latter case to the subspace satisfying the appropriate equivariance

condition.)

2.4 The Seiberg–Witten ↔ semiclassical map

We’ve now given two descriptions of the space of (framed) BPS states, one in the Seiberg–

Witten picture, and one in the semiclassical picture. On a regime of overlapping validity

14And here we are assuming that all components of the magnetic charge are strictly positive. If not, then

one should view the monopole as an embedded monopole from a smaller gauge group where the magnetic

charge does have this property.
15that is, spinors in the above kernel tensored with spinors in the (non-L2) kernel of the R4 part of the

Dirac operator
16Meanwhile, Ycm is actually fixed by the other asymptotic data and is not an independent quantity.

This follows directly from the BPS equations. Specifically, (qm,Ycm) + 〈qe,X〉 = 0.

– 16 –



they must agree. The real question is, how are the parameters that go into the two

descriptions related? We conjecture the following for framed BPS states,

HscBPS
P,X ,Y,qm,qe

∼= HBPS
Lζ(P ),u,γ (2.19)

provided

X = Im(ζ−1a(u)) , Y = Im(ζ−1aD(u)) , qm ⊕ qe = γ . (2.20)

For vanilla BPS states we conjecture

(HscBPS
0 )X ,Y0,qm,qe

∼= (HBPS
0 )u,γ , (2.21)

provided the same relations hold with ζ → ζvan := −Zγ(u)/|Zγ(u)|. Here we’ve defined

Cartan-valued a, aD by taking a(u) = aI(u)HI and aD =
∑

I aD,I(αI)
∨.

Some fine print that must be included is the following. A choice of special coordinates

(aI , aD,J) and corresponding splitting of the electromagnetic charge lattices Γ = Γm ⊕ Γe

requires the specification of a ‘duality frame.’ In the above the frame is determined by

the condition that X be in the fundamental Weyl chamber. Secondly, the equivalence is

only expected to hold over an appropriately defined weak-coupling regime of the Coulomb

branch. One reasonable definition of the regime Bwc ⊂ B would be in terms of the radius

of convergence of the weak-coupling expansion of the Seiberg–Witten prepotential. This is

motivated by the observation that this is the regime where one could, in principle, sum all

saddle-point contributions to the path integral over the fluctuations δA in (2.13). If one

could do this, then the result for the BPS spectrum defined from the quantum mechanics

must match the Seiberg–Witten result. This regime excludes strong-coupling chambers that

are the interior of compact sets in B′, and keeps us away from the complex codimension

one singularities associated with (classical) symmetry enhancement of the gauge group.

What is the motivation for the form of the conjecture, (2.20)? First, these definitions

reduce to the leading order semiclassical results we mentioned previously, X → X∞, Y →
4π
g2
0
Y∞, as a → ϕ∞ = ζ−1(Y∞ + iX∞) in this limit. Second, they pass a limited check at

one-loop that we performed by explicitly computing the one-loop correction to the soliton

mass in the semiclassical framework. Third, and by far the strongest evidence, is that

they give the right identification in a specific (and highly nontrivial) example where both

descriptions of the BPS Hilbert subspaces are computable in detail. We will comment on

this example in the next lecture.

3 Lecture III: Predictions from physics for L2 cohomology

Let’s summarize the situation from last time. We constructed families of Dirac-like opera-

tors on the singular monopole moduli spaces M, and the strongly centered moduli spaces

M0:

/D
Y
M(P ;qm,X ) ≡ /D

Y
, /D

Y0

M0(qm,X ) ≡ /D
Y0

. (3.1)
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These depend on X ∈ W+ ⊂ t, the fundamental Weyl chamber, and Y ∈ t, or Y0 ∈ t⊥qm ,

the subspace of the Cartan that is Killing orthogonal to the magnetic charge. Equivalently

we have Dolbeault-like operators ∂̄Y and ∂̄Y
0
.

The isometries of M and M0 are generated by Killing vectors forming an so(3) ⊕ t

and so(3)⊕ t⊥qm algebra. These actions can be lifted to actions on the Dirac spinor bundle.

In particular qe and q0
e are characters for the torus groups associated with the last factors,

and the L2-kernel of the Dirac operators can be graded by these characters. We identified

these kernels with the spaces of framed and vanilla BPS states:

ker
(q0

e )
L2 /D

Y ∼= HBPS
Lζ ,u,γ

,
[
ker

(q0
e )

L2 /D
Y0
]Zk ∼= (HBPS

0 )u,γ . (3.2)

Here the k·Z/Z equivariance condition, together with q0
e , determine the electric charge qe up

to integer shifts by q∨m. Hence the BPS spaces for this Julia–Zee tower of electromagnetic

charges are the same. The identifications of these spaces are made subject to the map

described under (2.20).

Now we turn to some consequences of the identifications (3.2).

3.1 P1: No exotics as a generalized Sen conjecture

What is no-exotics? The Wigner little group analysis permits HBPS
Lζ ,u,γ

, (HBPS
0 )u,γ , to be

arbitrary SU(2)R representations. But all ‘experimental evidence’ to date (and there is

quite a lot) shows that they always transform trivially. The no-exotics conjecture is the

claim that this is always true on the Coulomb branch of any N = 2 theory. ‘Exotic’ states

in this context are states that transform nontrivially under SU(2)R. Since this conjecture

was made in 2010 by Gaiotto–Moore–Neitzke [], it has been proven for the type of theories

we are considering here (theories without matter hypermultiplets), when the gauge group

is simply laced []. The proof utilizes yet a different representation of BPS states in terms

of curves in Calabi–Yau three-folds. This representation of BPS states follows from the

‘geometric engineering’ of N = 2 supersymmetric gauge theories in string theory.17 A

more generally applicable argument based on the analytic structure of matrix elements of

the R-symmetry (Noether) current operators between BPS states has also been given by

Cordova and Dumitrescu. So let’s take no-exotics as a well-motivated hypothesis based on

N = 2 supersymmetric quantum Yang–Mills.

We then must understand what it means semiclassically, and in order to do that we

must first understand the realization of SU(2)R in the semiclassical language. For this it

is convenient to use the forms representation of states, where states are L2 sums of (0, q)

forms, Ψ = ⊕qΨ(0,q).18 On our moduli spaces we have a triplet of Kähler forms. Take the

17One can determine the geometric meaning of SU(2)R in this context and turn the statement of no-

exotics into an explicit statement about curves in CY3’s.
18There is also a nice characterization in the spinor language: There is an SU(2)R action via endomor-

phisms of the tangent space that form the commutant of the holonomy group Sp(N) ⊂ SO(4N), where

4N = dimM or dimM0. This action can be lifted to the Dirac spinor bundle.
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third one to be ‘the’ Kahler form, defining our complex coordinates and use the other two

to construct a holomorphic-symplectic form and its conjugate. Then, the action of SU(2)R
on general states is given by the following. The Cartan generator on λ(q) gives 1

2(q − N)

times λ(q), where we take the dimension of M or M0 to be 4N . The raising operator acts

by wedging with ω+ and the lowering operator by contracting with ω−. These operations in

fact define an sl(2) Lefchetz action on the anti-holomorphic tangent bundle which descends

to the cohomology of the twisted Dolbeault operator defining the BPS states. Hence no

exotics holds if and only if

P1: all nontrivial L2 cohomology of our supercharge operators ∂̄Y and ∂̄Y
0
, is in the

middle degree (by the vanishing of the Î3 action)—i.e. (0, N)-forms—and is furthermore

Lefshetz-primitive.

This is a strong statement about the cohomology of a large class of differential operators

on a large class of hyperkähler manifolds. It is reminiscent of Sen’s famous conjecture

concerning the existence of harmonic forms on monopole moduli space, which he derived

from considerations of the 4D N = 4 theory and semiclassical analysis.19 In fact, this

result can be viewed as a generalization of the original Sen conjecture, but to fit Sen’s

result within this framework we have to extend our analysis to cover N = 2 theories

with matter hypermultiplets. The reason is that the N = 4 theory that Sen analyzed

is a special case of an N = 2 theory with matter—specifically an adjoint-valued matter

hypermultiplet.20

This was recently demonstrated by Brennan and Moore []. It has been known since

work of [] that matter fermions carry zero-modes in the monopole background which are

associated with an index bundle of a Dirac operator. Quantization of these additional

collective coordinates amounts to twisting the Dirac operator by connection on the Spin

bundle associated to the matter index bundle. (The Spin bundle arises from representing

the Clifford algebra that the additional collective coordinates satisfy.) The matter bundle

comes with a hyperholomorphic connection given in terms of Atiyah and Singers ‘universal

connection.’ In the special case where the matter transforms in the adjoint representation,

the matter bundle is isomorphic to the holomorphic tangent bundle, and hence the spin

bundle gives us a copy of Λ∗T (1,0). Hence states in the quantum mechanics are represented

by Λ∗T (1,0) bundle-valued (0, ∗) L2 forms—i.e. by general L2 forms. The L2-kernel of the

new twisted Dirac operator is identified with the L2 de-Rham cohomology, and no-exotics

still leads to the statement that the cohomology vanishes outside the middle degree. (See

Brennan–Moore for more details [].)

19It is also reminiscent of the Vafa–Witten conjecture reviewed in Richard Melrose’s talk, and results

discussed in Francesco Bei’s talk.
20Here ‘hypermultiplet’ refers to the supersymmetry representation content; in this context it involves

two additional complex Higgs fields and two additional Weyl fermions.
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3.2 P2: Wall-crossing for the Dirac kernel

The second prediction is concerned with translating the stability and wall-crossing prop-

erties into statements about where the Dirac-like operator fail to be Fredholm and how

their kernels jump. Something I didn’t have time to explain is that one consequence of

no-exotics in spinor language is that the kernel of the Dirac operator must be chiral.21

Therefore the index computes the dimension of the kernel.

Then, applying the map (2.20) to the formulae from earlier for the vanilla walls, we

conclude the following:

P2a: Dirac operators in the family /D
Y0

M0(qm,X ) for (X ,Y0) ∈W+× t⊥qm fail to be Fredholm

only if there are charges q1,2 = q1,2,m ⊕ q1,2,e ∈ Λcr ⊕ Λrt such that

• q1,m + q2,m = qm,

• ⟪q1, q2⟫ 6= 0,

• kerL2( /D
Y0

M0(q1,m,X )) 6= 0, and kerL2( /D
Y0

M0(q1,m,X )) 6= 0, and

• (Y0, γ1,m) + 〈γ1,e − γ∨1,m
〈γe,X〉
(γm,X ) ,X〉 = 0,

where γe = γ1,e + γ2,e. Upon crossing the real co-dimension one wall defined by the

last equation, the kernel of the Dirac operator will jump in the way determined by the

(Kontsevich–Soibelman) wall-crossing formula for Ω(u, γ), (with u, γ given through (2.20)).

Also, this last condition is the statement that Im(Zq1(u)Zq2(u)) = 0. There is also the

condition from (2.10) that Re(Zq1(u)Zq2(u)) > 0, however one can show that this con-

dition is always satisfied in the weak-coupling regime of the Coulomb branch where the

semiclassical analysis applies [].

Note that although the last condition above appears to be asymmetric in q1, q2, it is in

fact equivalent to the same equation with q1 → q2, due to the fact that (Y0, γ1,m+γ2,m) = 0.

Analogously, for the framed case we have:

P2b: For singular monopole moduli spaces, Dirac operators in the family /D
Y
M(P ;qm,X )

for (X ,Y) ∈ W+ × t are Fredholm except on real co-dimension one walls defined by ‘halo’

charges qh = qh,m ⊕ qh,e ∈ Λcr ⊕ Λe such that

• kerL2( /D
Y0

M0(qh,m,X )) 6= 0, and

• (Y, γh,m) + 〈γh,e,X〉 = 0.

Upon crossing these walls, the kernel jumps according to the (Gaiotto–Moore–Neitzke)

wall-crossing formula for the framed indices Ω(Lζ(P ), u, γ).

21The action of the nontrivial central element, −1 ∈ SU(2)R, on Dirac spinors is given by the action of

the Clifford volume element. Hence if the spinor is to be invariant under this action then it restricts to the

positive chirality spinor bundle.
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3.3 An example

3.4 Conclusions

References

[1] C. H. Taubes, “The Existence of Multi - Monopole Solutions to the Nonabelian, Yang-Mills

Higgs Equations for Arbitrary Simple Gauge Groups,” Commun.Math.Phys. 80 (1981) 343.

[2] G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl. Phys.

B138 (1978) 1.

[3] A. Kapustin, “Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality,”

Phys.Rev. D74 (2006) 025005, arXiv:hep-th/0501015 [hep-th].

[4] P. B. Kronheimer, “Monopoles and Taub-NUT Metrics,” M.Sc. thesis, Oxford, 1985.

http://www.math.harvard.edu/~kronheim/papers.html.

[5] M. Pauly, “Monopole moduli spaces for compact 3-manifolds,” Math. Ann. 311 no. 1, (1998)

125–146. http://dx.doi.org/10.1007/s002080050180.

[6] S. A. Cherkis and A. Kapustin, “Singular monopoles and supersymmetric gauge theories in

three-dimensions,” Nucl.Phys. B525 (1998) 215–234, arXiv:hep-th/9711145 [hep-th].

[7] A. Kapustin and E. Witten, “Electric-Magnetic Duality And The Geometric Langlands

Program,” Commun.Num.Theor.Phys. 1 (2007) 1–236, arXiv:hep-th/0604151 [hep-th].

[8] G. W. Moore, A. B. Royston, and D. V. d. Bleeken, “Parameter counting for singular

monopoles on R3,” JHEP 1410 (2014) 142, arXiv:1404.5616 [hep-th].

[9] G. W. Moore, A. B. Royston, and D. Van den Bleeken, “Brane bending and monopole

moduli,” JHEP 1410 (2014) 157, arXiv:1404.7158 [hep-th].

[10] E. J. Weinberg, “Fundamental Monopoles and Multi-Monopole Solutions for Arbitrary

Simple Gauge Groups,” Nucl.Phys. B167 (1980) 500.

[11] L. Foscolo, “Deformation theory of periodic monopoles (with singularities),” Comm. Math.

Phys. 341 no. 1, (2016) 351–390, arXiv:1411.6946 [math].

[12] M. Atiyah and N. Hitchin, The geometry and dynamics of magnetic monopoles. M. B. Porter

Lectures. Princeton University Press, Princeton, NJ, 1988.

[13] C. Callias, “Index Theorems on Open Spaces,” Commun.Math.Phys. 62 (1978) 213–234.

[14] C. H. Taubes, “Stability in Yang-Mills Theories,” Commun.Math.Phys. 91 (1983) 235.

[15] N. J. Hitchin, N. S. Manton, and M. K. Murray, “Symmetric monopoles,” Nonlinearity 8

(1995) 661–692, arXiv:dg-ga/9503016 [dg-ga].

[16] S. Donaldson, “Nahm’s Equations and the Classification of Monopoles,”

Commun.Math.Phys. 96 (1984) 387–407.

[17] J. Hurtubise, “Monopoles and rational maps: a note on a theorem of Donaldson,” Comm.

Math. Phys. 100 no. 2, (1985) 191–196.

[18] S. Jarvis, “Euclidean monopoles and rational maps,” Proc. London Math. Soc. (3) 77 no. 1,

(1998) 170–192.

[19] G. W. Moore, A. B. Royston, and D. Van den Bleeken, “Semiclassical framed BPS states,”

JHEP 07 (2016) 071, arXiv:1512.08924 [hep-th].

– 21 –

http://dx.doi.org/10.1007/BF01208275
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1103/PhysRevD.74.025005
http://arxiv.org/abs/hep-th/0501015
http://www.math.harvard.edu/~kronheim/papers.html
http://dx.doi.org/10.1007/s002080050180
http://dx.doi.org/10.1007/s002080050180
http://dx.doi.org/10.1007/s002080050180
http://dx.doi.org/10.1016/S0550-3213(98)00341-1
http://arxiv.org/abs/hep-th/9711145
http://arxiv.org/abs/hep-th/0604151
http://dx.doi.org/10.1007/JHEP10(2014)142
http://arxiv.org/abs/1404.5616
http://dx.doi.org/10.1007/JHEP10(2014)157
http://arxiv.org/abs/1404.7158
http://dx.doi.org/10.1016/0550-3213(80)90245-X
http://arxiv.org/abs/1411.6946
http://dx.doi.org/10.1007/BF01202525
http://dx.doi.org/10.1007/BF01211160
http://dx.doi.org/10.1088/0951-7715/8/5/002
http://dx.doi.org/10.1088/0951-7715/8/5/002
http://arxiv.org/abs/dg-ga/9503016
http://dx.doi.org/10.1007/BF01214583
http://dx.doi.org/10.1007/JHEP07(2016)071
http://arxiv.org/abs/1512.08924


[20] J. P. Gauntlett and D. A. Lowe, “Dyons and S duality in N=4 supersymmetric gauge

theory,” Nucl.Phys. B472 (1996) 194–206, arXiv:hep-th/9601085 [hep-th].

[21] K.-M. Lee, E. J. Weinberg, and P. Yi, “Electromagnetic duality and SU(3) monopoles,”

Phys.Lett. B376 (1996) 97–102, arXiv:hep-th/9601097 [hep-th].

[22] C. Houghton, P. W. Irwin, and A. J. Mountain, “Two monopoles of one type and one of

another,” JHEP 9904 (1999) 029, arXiv:hep-th/9902111 [hep-th].

[23] G. Gibbons and N. Manton, “The Moduli space metric for well separated BPS monopoles,”

Phys.Lett. B356 (1995) 32–38, arXiv:hep-th/9506052 [hep-th].

[24] K.-M. Lee, E. J. Weinberg, and P. Yi, “The Moduli space of many BPS monopoles for

arbitrary gauge groups,” Phys.Rev. D54 (1996) 1633–1643, arXiv:hep-th/9602167

[hep-th].

[25] M. K. Murray, “A Note on the (1, 1,..., 1) monopole metric,” J.Geom.Phys. 23 (1997) 31–41,

arXiv:hep-th/9605054 [hep-th].

[26] A. S. Dancer, “Nahm’s equations and hyperKahler geometry,” Commun.Math.Phys. 158

(1993) 545–568.

[27] S. A. Cherkis and A. Kapustin, “D(k) gravitational instantons and Nahm equations,”

Adv.Theor.Math.Phys. 2 (1999) 1287–1306, arXiv:hep-th/9803112 [hep-th].

[28] S. A. Cherkis and A. Kapustin, “Singular monopoles and gravitational instantons,”

Commun.Math.Phys. 203 (1999) 713–728, arXiv:hep-th/9803160 [hep-th].

– 22 –

http://dx.doi.org/10.1016/0550-3213(96)00218-0
http://arxiv.org/abs/hep-th/9601085
http://dx.doi.org/10.1016/0370-2693(96)00286-9
http://arxiv.org/abs/hep-th/9601097
http://arxiv.org/abs/hep-th/9902111
http://dx.doi.org/10.1016/0370-2693(95)00813-Z
http://arxiv.org/abs/hep-th/9506052
http://dx.doi.org/10.1103/PhysRevD.54.1633
http://arxiv.org/abs/hep-th/9602167
http://arxiv.org/abs/hep-th/9602167
http://dx.doi.org/10.1016/S0393-0440(96)00044-7
http://arxiv.org/abs/hep-th/9605054
http://dx.doi.org/10.1007/BF02096803
http://dx.doi.org/10.1007/BF02096803
http://arxiv.org/abs/hep-th/9803112
http://dx.doi.org/10.1007/s002200050632
http://arxiv.org/abs/hep-th/9803160

	Lecture I: Classical gauge theory and monopoles
	Moduli space of (singular) monopoles
	Examples

	Embedding into N= 2 super-Yang–Mills

	Lecture 2: Quantum SYM and Dirac Operators on M
	Quantum generalities
	Seiberg–Witten approach
	The semiclassical approach
	The Seiberg–Witten  semiclassical map

	Lecture III: Predictions from physics for L2 cohomology
	P1: No exotics as a generalized Sen conjecture
	P2: Wall-crossing for the Dirac kernel
	An example
	Conclusions


