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I. Vortices

I A vortex is a gauge theory soliton on a 2-d Riemann
surface M. It couples a complex Higgs field φ (with no
singularities) to a U(1) connection a. A zero of φ
represents a vortex centre.

I On M, with z = x1 + ix2 a (local) complex coordinate, the
metric is

ds2
0 = Ω0(z, z̄) dzdz̄ .

The total area A0 of M plays an important role in the theory.
We specialise later to surfaces with constant curvature.

I To have N vortices with positive multiplicity, the first Chern
number needs to be N. Physically, there is a magnetic flux
2πN.



II. Standard Vortices

I The (Bogomolny) vortex equations are

Dz̄φ = 0 ,
∗f = 1− |φ|2 .

I Here ∗f = 1
Ω0

f12 = 1
Ω0

(∂1a2 − ∂2a1) is the magnetic field.
I The first equation ∂z̄φ− iaz̄φ = 0 can be solved for a:

az̄ = −i∂z̄(logφ) , az = i∂z(logφ) .

I The second equation then reduces to

− 1
2Ω0
∇2 log |φ|2 = 1− |φ|2 .



I It is convenient to set |φ|2 = φφ = e2u. Then

− 1
Ω0
∇2u = 1− e2u ,

with the Beltrami Laplacian of u on the left. This is the
Taubes vortex equation.

I u has logarithmic singularities at the zeros of φ, so there
are N additional delta functions at the vortex centres.

I N-vortex solutions exist on M provided A0 > 2πN (Taubes,
Bradlow, Garcia-Prada).

I The moduli space isMN = MN
symm, as there is a unique

vortex given N unordered (possibly coincident) points on
M.



Baptista Geometry of Vortices

I Vortices have a geometric interpretation. Define a new,
Baptista metric on M

ds2 = |φ|2ds2
0 = e2uds2

0 .

I This is conformal to the original metric, with conformal
factor Ω = e2uΩ0, but has conical singularities with cone
angle 4π at the N vortex centres.

I The Taubes equation can be expressed as

(K + 1)Ω = (K0 + 1)Ω0 ,

where K ,K0 are the Gaussian curvatures of Ω,Ω0.
Gauss–Bonnet, allowing for the N conical singularities,
reproduces the Bradlow constraint A0 > 2πN.



Integrable Vortices

I The vortex equations are integrable if M is hyperbolic, i.e. if
K0 = −1. This was known to Witten – the vortex eqs. are a
dimensional reduction of anti-self-dual SU(2) Yang–Mills
eqs. on R4 ∼ H2 × S2. Vortices on H2 are SO(3)-invariant
instantons.

I Explicit solutions are known on H2 and also on the
hyperbolic Bolza surface of genus 2 (Maldonado and
NSM). The Bradlow constraint on a compact genus g
surface with K0 = −1 is N < 2g− 2.

I Note that K = −1 in this case; the Baptista metric on M is
hyperbolic, with conical singularities.

I The moduli spaceMN becomes a moduli space of
punctured Riemann surfaces with conical, hyperbolic
metrics. One could extendMN to allow for the moduli of
the background Riemann surface M.



Bolza surface double covers the Riemann sphere



{8,8} tessellation of H2 by Bolza octagons



Contours of |φ|2 = e2u for Bolza vortex at centre.



Vortex Dynamics and Moduli Space Geometry

I Vortices satisfying the Bogomolny equations are minima of
a U(1) Yang–Mills–Higgs energy in 2-d.

I There is a dynamical theory in 2+1 dimensions. Vortices
can move, and they have kinetic energy. Restricted toMN ,
the kinetic energy is a quadratic form in vortex velocities
(tangent vectors), and defines a metric onMN . Slowly
moving vortices follow geodesics inMN .

I The metric onMN is Kähler, and there is a formula for it
based on local properties of u near each vortex centre
(Strachan–Samols localization).

I What is the relation between the Strachan–Samols metric
and the Weil–Petersson metric on punctured Riemann
surfaces (with 4π cone angles)? We don’t know.



III. Exotic Vortices

I A more general Taubes-type vortex equation is

− 1
Ω0
∇2u = −C0 + Ce2u .

Both constants C0 and C can be scaled to either −1,0,+1,
so there are nine cases.

I The LHS is the magnetic field. Its integral over M must be
positive if vortex number N > 0. The RHS must therefore
be positive for some u.

I The five surviving vortex types are
(i) Standard (Taubes) vortices (C0 = −1, C = −1);
(ii) “Bradlow” vortices (C0 = −1, C = 0);
(iii) Ambjørn–Olesen vortices (C0 = −1,C = 1);
(iv) Jackiw–Pi vortices (C0 = 0, C = 1);
(v) Popov vortices (C0 = 1, C = 1).



I The vortex centres are where e2u vanishes. For standard
vortices the magnetic field is maximal there (Meissner
effect); for Bradlow vortices the magnetic field is uniform;
for the remaining vortex types it is minimal (anti-Meissner
effect).

I The existence of solutions, and the moduli space of
solutions, are less well understood for the exotic vortices.



Integrable Exotic Vortices

I The vortex equation is integrable on backgrounds with
Gaussian curvature K0 = C0. Integrable backgrounds
include
(i) hyperbolic plane for standard vortices,
(ii) flat plane or torus for Jackiw–Pi vortices,
(iii) sphere for Popov vortices.

I In integrable cases, all these vortex equations reduce to
Liouville’s equation, and solutions are constructed using a
holomorphic function f (z).



I The solution is locally

|φ|2 = e2u =
(1 + C0|z|2)2

(1 + C|f (z)|2)2

∣∣∣∣ df
dz

∣∣∣∣2 ,
and one may fix the gauge by choosing

φ =
1 + C0|z|2

1 + C|f (z)|2
df
dz

.

I For example, for planar Jackiw–Pi vortices,

φ =
1

1 + |f (z)|2
df
dz

with f a rational function. For Jackiw–Pi vortices on a torus
f is an elliptic function.



I Vortex centres are the ramification points, where df
dz = 0.

I Globally, f is a map from M, with curvature C0, to a smooth
surface with curvature C. |φ|2 is the ratio of the target
metric pulled back to M, and the background metric of M,
at corresponding points.

I The pulled-back metric is the Baptista metric and has
conical singularities at the ramification points of f .



More Exotic Vortices

I For Popov vortices on a sphere, f is a rational function of
degree n. df

dz then has N = 2n − 2 zeros, so the vortex
number is even.

I There is a (coincident) N = 2 Bradlow vortex on the Bolza
surface. The Baptista metric is flat, and has one conical
singularity with cone angle 6π. This is the metric of a flat
regular octagon with opposite sides identified.

I One can find an N = 6 Ambjørn–Olesen vortex on the
Bolza surface. The vortices are at the branch points of the
double covering of the sphere, and the Baptista metric is
the pulled-back round metric on the double covered
sphere.

I There are many more vortex solutions related to branched
covering maps.



Energy and Dynamics of Exotic Vortices

I The static energy function for all the vortex types we have
considered is

E =

∫
M

{ 1
Ω2

0
f 2
12 −

2C
Ω0

(
D1φD1φ+ D2φD2φ

)
+
(
−C0 + C|φ|2

)2
}

Ω0 d2x .

E is not positive definite for C > 0, so not all vortex types
are stable.

I Manipulation of E (completing the square) shows that
vortices are always stationary points of E , but not always
minima.



I The static energy can be extended to a Lagrangian for
fields on R×M, with metric dt2 − Ω0 dzdz̄,

L =

∫
M

{
− 1

2
fµν fµν − 2CDµφDµφ

−
(
−C0 + C|φ|2

)2
}

Ω0 d2x .

I The kinetic energy (contribution from terms with µ = 0) is
exotic if C > 0, as D0φ contributes with a minus sign,
although the contribution of the electric field f0i is always
positive.

I This Lagrangian naturally arises by dimensionally reducing
a pure Yang–Mills theory in 4 + 1 dimensions (F. Contatto
and M. Dunajski). For C = 1 and C = 0 the gauge group in
4-d is non-compact (SU(1,1) and E2, resp.) and for C = 1
this leads to an exotic kinetic energy.



I Contatto and Dunajski, and also E. Walton and I, are
considering the moduli space dynamics of these various
vortices. The Strachan/Samols argument again shows that
the kinetic energy integral reduces to a sum of localized
contributions.

I The kinetic energy and moduli space metric may be
positive, zero or negative. Geodesic motion could therefore
be along null curves.

I E.g., a Popov vortex at Z = 0 is described by the rational
function f (z; t) = c(t)z2. The fields, and hence the vortex
size, vary as c varies, but the kinetic energy is zero. This
follows from the localization formula, and has also been
checked by direct integration.

I More generally, for C = 1 it is interesting to look at the
orbits of the Möbius group of S2 target transformations,
which modify f but leave vortex centres fixed. These fibres
of moduli space are non-compact.

I A Jackiw-Pi vortex moving linearly on a torus has zero
kinetic energy.



IV. Summary

I The standard Bogomolny/Taubes U(1) vortex equation can
be extended to five distinct vortex equations, with
parameters C0 and C. All can be interpreted in terms of
the curvature of the Baptista metric |φ|2ds2

0. Vortices are
conical singularities of the Baptista metric with cone angle
4π.

I Each vortex equation is integrable on a surface of constant
curvature K0 = C0, and reduces to Liouville’s equation.
Vortex solutions can be found using holomorphic maps
f (z). The Baptista metric has constant curvature K = C.

I The metric on the moduli space of vortices is quite well
understood using the Strachan/Samols localization
formula. For integrable vortices, what is the relation to the
Weil–Petersson metric on the moduli space of constant
curvature surfaces with conical singularities?
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