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The concepts and ideas presented in this course were mostly introduced
into analysis by R.B. Melrose. The most comprehensive resource is [8], see
also [7].
Introductory presentations are given in [2] and [1].
Lectures 1 and 2 were board talks on manifolds with corners,
polyhomogeneous functions, blow-up and their use in the analysis of
singular problems. The next slide is a version of the table of examples in
lecture 2, and after this you find the slides of lecture 3 (on
pseudodifferential calculus related to these singular problems). References,
including some which are specific to lecture 3, can be found at the end of
this file.
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Types of degeneration: Examples

Geometric origin Vector fields (local basis)
none (smooth, compact manifold) ∂xi

infinite cylinder, cone near its tip x∂x , ∂yi
cone (e.g. Rn) near infinity x2∂x , x∂yi
edge or wedge x∂x , x∂yi , ∂zj

fibred cusp x2∂x , x∂yi , ∂zj
hyperbolic space at infinity x∂x , x∂yi

The base space for these examples is a manifold with boundary (except in
the smooth case), and the local basis refers to a neighborhood of a
boundary point, with the boundary defined by x = 0. Fibres in the
boundary are given by x = 0, y = const.
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General setup for singular problems (Melrose)

Given: Boundary fibration structure (X ,V)

X : a compact manifold with boundary (or corners)
V : a Lie algebra of vector fields on X (locally free C∞(X ) module)

This defines Diffm
V (X ), the V-principal symbol and V-ellipticity of

A ∈ Diffm
V (X ), and V-Sobolev spaces Hs

V(X ).

Goals (elliptic operators):

Construct parametrices of V-elliptic elements of Diffm
V (X ), up to

remainders which are (depending on level of precision required)

smoothing

compact

rapidly vanishing (at the boundary, or at least some faces)

Classical (non-singular) case

X has no boundary, V = all smooth vector fields on X
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General principles for studying singular problems

Preliminary step: Put problem in the form (X ,V).
(This may involve blow-ups, e.g. cone  X )

General principles for studying (X ,V)

Split into geometric and analytic aspects:

Geometry encodes singular structure
Analysis: conormal distributions (’hide’ Fourier transform)

Separate different types of singular behavior by blow-ups

Describe operators via their Schwartz kernels

Use model problems
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The idea of model problems

Constructive approach

1 Solve model problems (= limit problems)

2 Patch model solutions together

3 Justify: Show that we get approximate solution; remove/estimate
errors

Non-singular case: ∂X = ∅, A = a(p,Dp) ∈ Diffm(X ) elliptic.

1 Model problems: Ap0 = am(p0,Dp), p0 ∈ X (’zoom in’ at p0)
(constant coefficients  invert by Fourier transform, get Bp0(p, p′))

2 Patch: B(p, p′) := Bp(p, p′)

3 Justify: AB = I + R, ord(R) = −1 Pseudodifferential calculus!

Case of conical singularity:
Additional model problem at tip of cone, solved by Mellin transform.
 b-calculus
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Classical ΨDO calculus

X = compact smooth manifold

Operators Symbols (on T ∗X ) Schwartz kernels (in D′(X 2))

Diff∗(X ) homog. polynomials in ξ δ-type at DiagX
Ψ∗(X ) homog. functions in ξ Conormal w.r.t. DiagX

Composition Theorem: Ψ∗(X ) is closed under products and
the symbol map σ∗ : Ψ∗(X )→ S∗(T ∗X ) preserves products

There is a short exact symbol sequence
0→ Ψm−1(X )→ Ψm(X )→ S [m](T ∗X )→ 0

Asymptotic completeness

Theorem

These properties give parametrix construction: A ∈ Ψm(X ) elliptic ⇒
∃B ∈ Ψ−m(X ) with AB − I ,BA− I ∈ Ψ−∞(X ).
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Classical ΨDO calculus

Functional analysis:

A ∈ Ψm(X ) bounded Hs(X )→ Hs−m(X )

R ∈ Ψ−∞(X ) ⇒ KR smooth ⇒ R compact operator

Corollary

A ∈ Ψm(X ) elliptic, then

elliptic regularity: Au = f , f ∈ Hs−m(X )⇒ u ∈ Hs(X )

A Fredholm

Note

Trivially extends to systems, i.e. operators A : C∞(X ,E )→ C∞(X ,F ) for
vector bundles E ,F → X .
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Small V −ΨDO calculus

X = compact manifold with corners, V Lie algebra of vector fields

Operators Symbols (on VT ∗X ) Schwartz kernels (in D′(X 2
V))

Diff∗V(X ) homog. polynomials in ξ δ-type at DiagX ,V
Ψ∗V(X ) homog. functions in ξ Conormal w.r.t. DiagX ,V

Composition Theorem: Ψ∗V(X ) is closed under products and
the symbol map Vσ∗ : Ψ∗V(X )→ S∗(VT ∗X ) preserves products

There is a short exact symbol sequence
0→ Ψm−1

V (X )→ Ψm
V (X )→ S [m](VT ∗X )→ 0

Asymptotic completeness

Theorem

These properties give parametrix construction: A ∈ Ψm
V (X ) elliptic ⇒

∃B ∈ Ψ−mV (X ) with AB − I ,BA− I ∈ Ψ−∞V (X ).
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Small V −ΨDO calculus

Functional analysis:

A ∈ Ψm
V (X ) bounded Hs

V(X )→ Hs−m
V (X )

R ∈ Ψ−∞V (X ) ⇒ KR smooth (but 6⇒ R compact operator)

Corollary

A ∈ Ψm
V (X ) V-elliptic, then

’small’ elliptic regularity: Au = f , f ∈ Hs−m
V (X )⇒ u ∈ Hs

V(X )

To get compact errors (hence Fredholm A), need larger calculus or
stronger ellipticity condition.
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Main steps in building a V −ΨDO calculus

1 Construct double space X 2
V . Requirements:

Diagonal DiagX lifts to p-submanifold DiagX ,V
For any V ∈ V, the vector field V × 0 on X 2 lifts smoothly to X 2

V
These lifts span the normal space to DiagX ,V

2 Define small V-calculus Ψ∗V(X ) via Schwartz kernels on X 2
V :

conormal w.r.t. DiagX ,V (uniformly to the boundary)
vanish to all orders at all faces except those intersecting DiagX ,V
symbols are functions on VT ∗X ∼= N∗ DiagX ,V

 can invert V-elliptic operators up to smoothing errors.

3 Identify obstruction to compactness of smoothing operators.
 normal, indicial operator(s)

4 If needed, enlarge calculus by including inverses of normal operator(s)
 get compact errors

Daniel Grieser (Oldenburg) Analysis on manifolds with corners June 19, 20 and 21, 2017 11 / 17



b-calculus

The problem:
X = cpct manifold with boundary, Vb = {vector fields tangent to ∂X}
(spanned by x∂x , ∂yi near boundary)

The solution:

1 Double space: X 2
b := [X 2, (∂X )2]

2 Model operator at boundary: IP(τ) ∈ Diffm(∂X )
(freeze coeff. at boundary, x∂x  τ)

3 Small b-calculus: Ψ∗b(X ), full b-calculus: Ψ∗,Eb (X )

Simple example

A = x∂x + c on X = R+ = [0,∞).
(only analyze behavior near x = 0)

Kernels of inverses: KB(x , x ′) =
(
x ′

x

)c
(H(x − x ′) + const)

Note: different kinds of singular behavior of KB are separated
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Fibred boundary (ϕ-calculus)

The problem:
X = cpct manifold with boundary, fibration Z → ∂X

ϕ→ Y
Vϕ spanned by x2∂x , x∂yi , ∂zj near boundary (tangent to fibres)

The solution:

1 Double space: X 2
ϕ := [X 2

b ,∆ϕ], ∆ϕ = fibre diagonal

2 Model operator at boundary: NP(ξ, η) ∈ Diffm(Z )
(freeze coeff. at boundary, x2Dx  ξ, xDy  η)

3 Small ϕ-calculus: Ψ∗ϕ(X ), full ϕ-calculus: Ψ∗,Eϕ (X )

Example X = B × Z , product metric

∆ ≈ (x2Dx)2 + (xDy )2 + D2
z

On C∞(B,K), K = kerD2
z , this is x2 times a b-operator

On C∞(B,K⊥), NP is invertible, hence parametrix in small ϕ-calculus
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Some references I

[1] D.Grieser, Basics of the b-calculus, arXiv math.AP/0010314, 2000.

(Appeared in J.B.Gil et al. (eds.), Approaches to Singular Analysis, 30-84,
Operator Theory: Advances and Applications, 125. Advances in Partial
Differential Equations, Birkhäuser, Basel.)

(leisurely elementary introduction to manifolds with corners, blow-ups and
the b-calculus)

[2] D. Grieser, Scales, blow-up and quasimode constructions, arXiv
math.SP/1607.04171, 2016.

(introduction to mwc and blow-ups with a different outlook than [?,
Gri:BBC]

[3] D. Grieser, E. Hunsicker, Pseudodifferential operator calculus for generalized
Q-rank 1 locally symmetric spaces, I, Journal of Functional Analysis, 2009.

(generalizes [6] to the case of several stacked fibrations)
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Some references II

[4] D. Grieser, E. Hunsicker, A Parametrix Construction for the Laplacian on
Q-rank 1 Locally Symmetric Spaces, Proceedings of the Workshop on
Fourier Analysis and Pseudo-Differential Operators, Aalto, Finland. Trends in
Mathematics, Birkhäuser, Basel 2014.

(ϕ-calculus for Dirac and Laplace operator in the presence of fibre-harmonic
forms at the boundary)

[5] T. Hausel, E. Hunsicker, and R. Mazzeo, Hodge cohomology of gravitational
instantons, Duke Math. J., 122(3):485–548, 2004.

(computation of L2-cohomology of fibred cusp and fibred boundary metrics
using results from [11])

[6] R. Mazzeo and R. Melrose, Pseudodifferential operators on manifolds with
fibred boundaries in “Mikio Sato: a great Japanese mathematician of the
twentieth century.”, Asian J. Math. 2 (1998) no. 4, 833–866.

(small ΨDO calculus for fibred cusp operators: x2∂x , x∂y , ∂z)
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Some references III

[7] R.B.Melrose, Pseudodifferential operators, corners and singular limits, Proc.
Int. Congr. Math., Kyoto/Japan 1990, Vol. I, 217-234 (1991).

(introduction of a general framework for singular analysis, with examples)

[8] R. Melrose, Differential analysis on manifolds with corners, in preparation,
partially available at http://www-math.mit.edu/~rbm/book.html.

(the details for [7], work in progress)

[9] R. Melrose, The Atiyah-Patodi-Singer index theorem, A.K. Peters, Newton
(1991).

(detailed introduction of the b-ΨDO calculus, x∂x , ∂y – elliptic and heat
kernel parametrix – and application to index theory)

[10] B-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential
Operators, John Wiley & Sons, (2008).

(another approach to a ΨDO calculus for cone and edge singularities,
including boundary value problems)
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Some references IV

[11] B. Vaillant, Index and spectral theory for manifolds with generalized fibred
cusps, Ph.D. thesis, Univ. of Bonn, 2001. arXiv:math-DG/0102072.

(extends the parametrix construction of [6] to the case of non-invertible
normal operator, in case of the Dirac operator; also heat kernel and
application to index theory)
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