Cyclic monopole chains

Derek Harland

School of Mathematics University of Leeds

23rd June 2017 Sen's conjecture and beyond, London

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Monopoles on \mathbb{R}^3

- fix trivial bundle $E = \mathbb{R}^3 \times \mathbb{C}^2 \to \mathbb{R}^3$
- $\phi(x)$ is an $\mathfrak{su}(2)$ -valued function
- A(x) is an $\mathfrak{su}(2)$ connection
- $F = dA + A \wedge A$ is its curvature.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Monopoles on \mathbb{R}^3

- fix trivial bundle $E = \mathbb{R}^3 \times \mathbb{C}^2 \to \mathbb{R}^3$
- $\phi(x)$ is an $\mathfrak{su}(2)$ -valued function
- A(x) is an $\mathfrak{su}(2)$ connection
- $F = dA + A \wedge A$ is its curvature.

Monopoles are solutions of

$$egin{aligned} \mathcal{D}\phi &= *\mathcal{F} \ &|\phi|
ightarrow \mathcal{V} > 0 ext{ as } r
ightarrow \infty. \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Monopoles on \mathbb{R}^3

- fix trivial bundle $E = \mathbb{R}^3 \times \mathbb{C}^2 \to \mathbb{R}^3$
- $\phi(x)$ is an $\mathfrak{su}(2)$ -valued function
- A(x) is an $\mathfrak{su}(2)$ connection
- $F = dA + A \wedge A$ is its curvature.

Monopoles are solutions of

$$D\phi = *F$$

$$|\phi| \rightarrow v > 0$$
 as $r \rightarrow \infty$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Charge $k \in \mathbb{N}$ = number zeros of ϕ .

Platonic monopoles

Hitchin Manton Murray '95, Houghton Sutcliffe '96 \times 2, HoMaSu '98

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Platonic monopoles

Hitchin Manton Murray '95, Houghton Sutcliffe '96 \times 2, HoMaSu '98

Bag conjecture. Cherry bags vs strawberry bags. Points in "middle" of moduli space.

Cherkis & Kapustin '01, Maldonado & Ward '13–'14, Foscolo '16 Coordinates on $\mathbb{R}^2 \times S^1$: $\zeta = x^1 + ix^2$, $\chi = x^3$. $\chi \sim \chi + \beta$ for some $\beta > 0$.

Cherkis & Kapustin '01, Maldonado & Ward '13–'14, Foscolo '16 Coordinates on $\mathbb{R}^2 \times S^1$: $\zeta = x^1 + ix^2$, $\chi = x^3$. $\chi \sim \chi + \beta$ for some $\beta > 0$.

Boundary condition:

$$A \sim i \left(b + \frac{k}{\beta} \arg \zeta \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} d\chi$$
$$\Phi \sim i \left(v + \frac{k}{\beta} \ln |\zeta| \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

v, b parameters, v = v + ib.

Cherkis & Kapustin '01, Maldonado & Ward '13–'14, Foscolo '16 Coordinates on $\mathbb{R}^2 \times S^1$: $\zeta = x^1 + ix^2$, $\chi = x^3$. $\chi \sim \chi + \beta$ for some $\beta > 0$.

Boundary condition:

$$A \sim i \left(b + \frac{k}{\beta} \arg \zeta \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} d\chi$$
$$\Phi \sim i \left(\nu + \frac{k}{\beta} \ln |\zeta| \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

v, b parameters, v = v + ib.

k = number of zeros of ϕ .

Cherkis & Kapustin '01, Maldonado & Ward '13–'14, Foscolo '16 Coordinates on $\mathbb{R}^2 \times S^1$: $\zeta = x^1 + ix^2$, $\chi = x^3$. $\chi \sim \chi + \beta$ for some $\beta > 0$.

Boundary condition:

$$A \sim i \left(b + \frac{k}{\beta} \arg \zeta \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} d\chi$$
$$\Phi \sim i \left(\nu + \frac{k}{\beta} \ln |\zeta| \right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

v, b parameters, v = v + ib.

k = number of zeros of ϕ .

Why $\mathbb{R}^2 \times S^1$?

- ▶ Natural for Nahm transforms $(\mathbb{R}^4 / \Lambda \leftrightarrow (\mathbb{R}^4)^* / \Lambda^*)$
- Interesting (ALG) hyperkähler metrics on moduli spaces

Natural symmetry groups...

Cyclic symmetry

Do there exist monopole chains with symmetry groups $\mathbb{Z}_m^{(n)}$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Cyclic symmetry

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Correspondences for monopole chains

Parabolic structures at points *p* encode holonomy/metric singularities

Parabolic structures at points *p* encode holonomy/metric singularities

Example (Parabolic structure at $0 \in \mathbb{C}$)

In a unitary gauge, consider connection

$$\begin{aligned} A &= \operatorname{i} \operatorname{diag}(\alpha_j) \mathrm{d}\theta \\ &= \frac{1}{2} \operatorname{diag}(\alpha_j) \left(\frac{\mathrm{d}z}{z} - \frac{\mathrm{d}\bar{z}}{\bar{z}} \right), \quad 0 \leq \alpha_1 < \alpha_2 < \ldots < \alpha_k < 1. \end{aligned}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Parabolic structures at points *p* encode holonomy/metric singularities

Example (Parabolic structure at $0 \in \mathbb{C}$)

In a unitary gauge, consider connection

$$A = i \operatorname{diag}(\alpha_j) d\theta$$

= $\frac{1}{2} \operatorname{diag}(\alpha_j) \left(\frac{\mathrm{d}z}{z} - \frac{\mathrm{d}\bar{z}}{\bar{z}} \right), \quad 0 \le \alpha_1 < \alpha_2 < \ldots < \alpha_k < 1.$

(日) (日) (日) (日) (日) (日) (日)

Holonomy about 0 is diag($\exp(-2\pi i\alpha_j)$).

Parabolic structures at points *p* encode holonomy/metric singularities

Example (Parabolic structure at $0 \in \mathbb{C}$)

In a *unitary* gauge, consider connection

$$A = i \operatorname{diag}(\alpha_j) d\theta$$

= $\frac{1}{2} \operatorname{diag}(\alpha_j) \left(\frac{\mathrm{d}z}{z} - \frac{\mathrm{d}\bar{z}}{\bar{z}} \right), \quad 0 \le \alpha_1 < \alpha_2 < \ldots < \alpha_k < 1.$

Holonomy about 0 is diag(exp $(-2\pi i\alpha_j)$).

Gauge transformation $g = \text{diag}(|z|^{\alpha_j})$ brings us to a *holomorphic* gauge, where $A = \text{diag}(\alpha_j)\text{d}z/z$. Hermitian metric is now

$$h = \operatorname{diag}(|z|^{2\alpha_j}).$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Parabolic structures at points *p* encode holonomy/metric singularities

Example (Parabolic structure at $0 \in \mathbb{C}$)

In a *unitary* gauge, consider connection

$$A = i \operatorname{diag}(\alpha_j) d\theta$$

= $\frac{1}{2} \operatorname{diag}(\alpha_j) \left(\frac{\mathrm{d}z}{z} - \frac{\mathrm{d}\bar{z}}{\bar{z}} \right), \quad 0 \le \alpha_1 < \alpha_2 < \ldots < \alpha_k < 1.$

Holonomy about 0 is diag($\exp(-2\pi i\alpha_j)$).

Gauge transformation $g = \text{diag}(|z|^{\alpha_j})$ brings us to a *holomorphic* gauge, where $A = \text{diag}(\alpha_j)\text{d}z/z$. Hermitian metric is now

$$h = \operatorname{diag}(|z|^{2\alpha_j}).$$

(The singular metric a flag structure on the fibre at p).

► Restriction *E* of *E* to slice C = R² ⊂ R² × S¹ has holomorphic structure and parabolic structure at ∞.

- ► Restriction *E* of *E* to slice C = R² ⊂ R² × S¹ has holomorphic structure and parabolic structure at ∞.
- The holonomy V(ζ) of A − iφ about the circle is a holomorphic invertible section of End(𝔅).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► Restriction *E* of *E* to slice C = R² ⊂ R² × S¹ has holomorphic structure and parabolic structure at ∞.
- The holonomy V(ζ) of A − iφ about the circle is a holomorphic invertible section of End(ε).
- The spectral curve $S \subset \mathbb{CP}^1_{\mathcal{C}} \times \mathbb{CP}^1_w$ of a monopole chain is

S: det($V(\zeta) - w$) = 0.

(日) (日) (日) (日) (日) (日) (日)

- ► Restriction *E* of *E* to slice C = R² ⊂ R² × S¹ has holomorphic structure and parabolic structure at ∞.
- The holonomy V(ζ) of A − iφ about the circle is a holomorphic invertible section of End(ε).
- The spectral curve $S \subset \mathbb{CP}^1_{\zeta} \times \mathbb{CP}^1_w$ of a monopole chain is

$$S$$
: det($V(\zeta) - w$) = 0.

▶ Bogomolny equation + boundary conditions ⇒

$$S: w - e^{\beta v} P(\zeta) + 1/w = 0$$

(日) (日) (日) (日) (日) (日) (日)

for some monic degree k polynomial P.

- ► Restriction *E* of *E* to slice C = R² ⊂ R² × S¹ has holomorphic structure and parabolic structure at ∞.
- The holonomy V(ζ) of A − iφ about the circle is a holomorphic invertible section of End(ε).
- The spectral curve $S \subset \mathbb{CP}^1_{\zeta} \times \mathbb{CP}^1_w$ of a monopole chain is

$$S$$
: det($V(\zeta) - w$) = 0.

Bogomolny equation + boundary conditions \Rightarrow

$$S: w - e^{\beta v} P(\zeta) + 1/w = 0$$

(日) (日) (日) (日) (日) (日) (日)

for some monic degree k polynomial P.

Line bundle L → S \ {p_− = (∞, 0), p₊ = (∞, ∞)}: L_{ζ,w} = eigenspace of V(ζ) with eigenvalue w.

- ► Restriction *E* of *E* to slice C = R² ⊂ R² × S¹ has holomorphic structure and parabolic structure at ∞.
- The holonomy V(ζ) of A − iφ about the circle is a holomorphic invertible section of End(ε).
- The spectral curve $S \subset \mathbb{CP}^1_{\zeta} \times \mathbb{CP}^1_w$ of a monopole chain is

$$S$$
: det($V(\zeta) - w$) = 0.

Bogomolny equation + boundary conditions \Rightarrow

$$S: w - e^{\beta v} P(\zeta) + 1/w = 0$$

for some monic degree k polynomial P.

- ► Line bundle $L \to S \setminus \{p_- = (\infty, 0), p_+ = (\infty, \infty)\}$: $L_{\zeta, w}$ = eigenspace of $V(\zeta)$ with eigenvalue w.
- *L* inherits parabolic structure with weights α_{\pm} at p_{\pm} .

- ► Restriction *E* of *E* to slice C = R² ⊂ R² × S¹ has holomorphic structure and parabolic structure at ∞.
- The holonomy V(ζ) of A − iφ about the circle is a holomorphic invertible section of End(𝔅).
- The spectral curve $S \subset \mathbb{CP}^1_{\zeta} \times \mathbb{CP}^1_w$ of a monopole chain is

$$S$$
: det($V(\zeta) - w$) = 0.

Bogomolny equation + boundary conditions \Rightarrow

$$S: w - e^{\beta v} P(\zeta) + 1/w = 0$$

for some monic degree k polynomial P.

- ► Line bundle $L \to S \setminus \{p_- = (\infty, 0), p_+ = (\infty, \infty)\}$: $L_{\zeta, w}$ = eigenspace of $V(\zeta)$ with eigenvalue w.
- *L* inherits parabolic structure with weights α_{\pm} at p_{\pm} .

►
$$(S, L, \alpha_{-}, \alpha_{+})$$
 are well-defined up to
 $(L, \alpha^{+}, \alpha^{-}) \sim (L \otimes [m^{+}p^{+} + m^{-}p^{-}], \alpha^{+} - m^{+}, \alpha^{-} - m^{-}), m^{\pm} \in \mathbb{Z}_{+}$

Hitchin's equations on $\mathbb{R} imes S^1_{2\pi/eta}$

 $\hat{\phi}$ a $\mathfrak{gl}(k,\mathbb{C})$ -valued function; \hat{A} a $\mathfrak{u}(k)$ gauge field.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Hitchin's equations on $\mathbb{R} \times S^1_{2\pi/\beta}$

 $\hat{\phi}$ a $\mathfrak{gl}(k,\mathbb{C})$ -valued function; \hat{A} a $\mathfrak{u}(k)$ gauge field.

Theorem (Cherkis-Kapustin '01)

There is a bijection between charge k monopole chains and solutions of Hitchin's equations,

$$\begin{split} &\bar{\partial}^{A}\hat{\phi}=0 \qquad (\text{HE1})\\ &*\,\hat{F}-\frac{\mathrm{i}}{2}[\hat{\phi},\hat{\phi}^{\dagger}]=0, \qquad (\text{HE2}) \end{split}$$

satisfying the following b.c.s in local unitary gauges as $r \to \pm \infty$.

$$\hat{\phi} \sim \exp(\beta(\pm s - v)/k) diag(1, e^{2\pi i/k}, \dots, e^{(k-1)\pi i/k})$$
 (HBC1)
 $|\hat{F}|^2 = O(|r|^{-3})$ (HBC2)

Hitchin's equations on $\mathbb{R} \times S^1_{2\pi/\beta}$

 $\hat{\phi}$ a $\mathfrak{gl}(k,\mathbb{C})$ -valued function; \hat{A} a $\mathfrak{u}(k)$ gauge field.

*

Theorem (Cherkis-Kapustin '01)

There is a bijection between charge k monopole chains and solutions of Hitchin's equations,

$$ar{\partial}^{A}\hat{\phi} = 0$$
 (HE1)
+ $\hat{F} - rac{\mathrm{i}}{2}[\hat{\phi}, \hat{\phi}^{\dagger}] = 0,$ (HE2)

satisfying the following b.c.s in local unitary gauges as $r \to \pm \infty$.

$$\hat{\phi} \sim \exp(\beta(\pm s - v)/k) \operatorname{diag}(1, e^{2\pi i/k}, \dots, e^{(k-1)\pi i/k})$$
(HBC1)
$$|\hat{F}|^2 = O(|r|^{-3})$$
(HBC2)

Solutions of (HE1), (HBC1) are called *twisted parabolic Higgs bundles*....

Hitchin equation \rightarrow Higgs bundles

Over \mathbb{CP}^1_w we have:

- A holomorphic rank k v.b. $\hat{\mathcal{E}} \to \mathbb{CP}^1_w$
- Parabolic structures at $w = 0, \infty$
- A holomorphic section φ of End Ê with simple poles at w = 0,∞, whose residues are compatible with the parabolic structures.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Hitchin equation \rightarrow Higgs bundles

Over \mathbb{CP}^1_w we have:

- A holomorphic rank k v.b. $\hat{\mathcal{E}} \to \mathbb{CP}^1_w$
- Parabolic structures at $w = 0, \infty$
- A holomorphic section φ of End Ê with simple poles at w = 0,∞, whose residues are compatible with the parabolic structures.

If ϕ was a section of $\Omega^{1,0} \otimes \text{End}(\hat{\mathcal{E}})$ this would be a *parabolic* Higgs bundle

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Hitchin equation \rightarrow Higgs bundles

Over \mathbb{CP}^1_w we have:

- A holomorphic rank k v.b. $\hat{\mathcal{E}} \to \mathbb{CP}^1_w$
- Parabolic structures at $w = 0, \infty$
- A holomorphic section φ of End Ê with simple poles at w = 0,∞, whose residues are compatible with the parabolic structures.

If ϕ was a section of $\Omega^{1,0} \otimes \text{End}(\hat{\mathcal{E}})$ this would be a *parabolic Higgs bundle*. Instead, it is a *twisted parabolic Higgs bundle*.

Over \mathbb{CP}^1_w we have:

- A holomorphic rank k v.b. $\hat{\mathcal{E}} \to \mathbb{CP}^1_w$
- Parabolic structures at $w = 0, \infty$
- A holomorphic section φ of End Ê with simple poles at w = 0,∞, whose residues are compatible with the parabolic structures.

If ϕ was a section of $\Omega^{1,0} \otimes \text{End}(\hat{\mathcal{E}})$ this would be a *parabolic Higgs bundle*. Instead, it is a *twisted parabolic Higgs bundle*.

A correspondence between solutions of Hitchin's eqs and Higgs bundles is called a *Hitchin-Kobayashi correspondence*. Hitchin-Kobayashi correspondences established for both *twisted* and *parabolic* Higgs bundles, but not (yet) for *twisted parabolic* Higgs bundles.

• Spectral curve $\hat{S} \subset \mathbb{CP}^1 \times \mathbb{CP}^1$

 \hat{S} : det $(\hat{\phi}(w) - \zeta) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Inherits parabolic structure with weights $\hat{\alpha}_{\pm}$ at p_{\pm}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Inherits parabolic structure with weights â_± at p_±

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (Cherkis-Kapustin)

Spectral data almost the same: $\hat{S} \cong S$, $\hat{L} \cong L$.

Inherits parabolic structure with weights â_± at p_±

Theorem (Cherkis-Kapustin)

Spectral data almost the same: $\hat{S} \cong S$, $\hat{L} \cong L$.

However, $\hat{\alpha}_{\pm} \neq \alpha_{\pm}$ because

Proposition (H)

par deg L := deg L +
$$\alpha_+$$
 + α_- = -k
par deg \hat{L} := deg \hat{L} + $\hat{\alpha}_+$ + $\hat{\alpha}_-$ = -k + 1.

Largest possible cyclic symmetry group is \mathbb{Z}_{2k} :

$$\boldsymbol{S}: \boldsymbol{w} - \boldsymbol{e}^{\beta \boldsymbol{v}} \zeta^{k} + 1/\boldsymbol{w} = \boldsymbol{0}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is invariant under $(\zeta, w) \mapsto (e^{\pi i/k}\zeta, -w)$.

Largest possible cyclic symmetry group is \mathbb{Z}_{2k} :

$$\begin{split} \boldsymbol{S} &: \boldsymbol{w} - \boldsymbol{e}^{\beta \boldsymbol{v}} \zeta^{k} + 1/\boldsymbol{w} = \boldsymbol{0} \\ \text{is invariant under } (\zeta, \boldsymbol{w}) \mapsto (\boldsymbol{e}^{\pi \mathrm{i}/k} \zeta, -\boldsymbol{w}). \\ \text{Action of } \mathbb{Z}_{2k}^{(m)} &: \\ & (\boldsymbol{L}, \alpha^{+}, \alpha^{-}) \mapsto (\boldsymbol{L}, \alpha^{+} - \boldsymbol{m}/2, \alpha^{-} + \boldsymbol{m}/2). \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Largest possible cyclic symmetry group is \mathbb{Z}_{2k} :

$$\begin{split} \boldsymbol{S} &: \boldsymbol{w} - \boldsymbol{e}^{\beta \boldsymbol{v}} \zeta^{k} + 1/\boldsymbol{w} = \boldsymbol{0} \\ \text{s invariant under } (\zeta, \boldsymbol{w}) &\mapsto (\boldsymbol{e}^{\pi \mathrm{i}/k} \zeta, -\boldsymbol{w}). \\ \text{Action of } \mathbb{Z}_{2k}^{(m)} &: \\ & (\boldsymbol{L}, \alpha^{+}, \alpha^{-}) \mapsto (\boldsymbol{L}, \alpha^{+} - \boldsymbol{m}/2, \alpha^{-} + \boldsymbol{m}/2). \end{split}$$

Theorem (H)

For each l = 0, 1, ..., k - 1 there exist unique spectral data for a *k*-monopole with symmetry group $\mathbb{Z}_{2k}^{(2l)}$. There are no spectral data invariant under $\mathbb{Z}_{2k}^{(2l+1)}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Largest possible cyclic symmetry group is \mathbb{Z}_{2k} :

$$\begin{split} \boldsymbol{S} &: \boldsymbol{w} - \boldsymbol{e}^{\beta \mathfrak{v}} \zeta^{k} + 1/\boldsymbol{w} = \boldsymbol{0} \\ \text{is invariant under } (\zeta, \boldsymbol{w}) &\mapsto (\boldsymbol{e}^{\pi \mathrm{i}/k} \zeta, -\boldsymbol{w}). \\ \text{Action of } \mathbb{Z}_{2k}^{(m)} &: \\ & (\boldsymbol{L}, \alpha^{+}, \alpha^{-}) \mapsto (\boldsymbol{L}, \alpha^{+} - \boldsymbol{m}/2, \alpha^{-} + \boldsymbol{m}/2). \end{split}$$

Theorem (H)

For each l = 0, 1, ..., k - 1 there exist unique spectral data for a *k*-monopole with symmetry group $\mathbb{Z}_{2k}^{(2l)}$. There are no spectral data invariant under $\mathbb{Z}_{2k}^{(2l+1)}$.

Proof.

Use Abel-Jacobi map: $\{L\} = \mathbb{R}^{2(k-1)}/\Lambda$.

Assuming HK correspondence, this proves existence of monopole chains with cyclic symmetry.

E.g.
$$k = 3$$
: $\phi = \begin{pmatrix} 0 & \nu_2 & 0 \\ 0 & 0 & \nu_3 \\ \nu_1 & 0 \end{pmatrix}$. $\nu_1 \nu_2 \nu_3 = e^{-\beta s} + e^{\beta s}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

E.g.
$$k = 3$$
: $\phi = \begin{pmatrix} 0 & \nu_2 & 0 \\ 0 & 0 & \nu_3 \\ \nu_1 & 0 \end{pmatrix}$. $\nu_1 \nu_2 \nu_3 = e^{-\beta s} + e^{\beta s}$.
 $\mathbb{Z}_6^{(0)}$:
 $\nu_1 = e^{-\beta s} + e^{\beta s}$
 $\nu_2 = 1$
 $\nu_3 = 1$
 $\mathbb{R}e s$
 $\frac{1}{2\beta} \quad \frac{1}{2\beta} \quad \frac{1}{2\beta} \quad \frac{1}{2\beta} \quad \frac{9\pi}{2\beta} \quad \frac{11\pi}{2\beta}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

E.g.
$$k = 3$$
: $\phi = \begin{pmatrix} 0 & \nu_2 & 0 \\ 0 & 0 & \nu_3 \\ \nu_1 & 0 \end{pmatrix}$. $\nu_1 \nu_2 \nu_3 = e^{-\beta s} + e^{\beta s}$.
 $\mathbb{Z}_6^{(0)}$:
 $\nu_1 = e^{-\beta s} + e^{\beta s}$
 $\nu_2 = 1$
 $\nu_3 = 1$
 $\mathbb{R}_5 s$
 $\mathbb{R}_6 s$
 $\mathbb{R}_6 s$
 $\mathbb{R}_7 s$
 $\mathbb{R}_6 s$
 $\mathbb{R}_7 s$
 \mathbb{R}_7

 $\mathbb{Z}_{6}^{(2)}: \text{ periodic up to gauge transformation.}$ $\nu_{1} = e^{-\frac{\beta s}{3}} + e^{\frac{\beta s}{3}} \xrightarrow{\text{Re } s}$ $\nu_{2} = e^{-\frac{\beta s}{3}} + e^{\frac{\beta s - 2\pi i}{3}} \xrightarrow{1} \frac{1}{2\beta} \xrightarrow{2} \frac{2}{3\beta} \xrightarrow{1} \frac{1}{2\beta} \xrightarrow{2} \frac{2}{\beta} \xrightarrow{7\pi} \frac{9\pi}{2\beta} \xrightarrow{1} \frac{9\pi}{2\beta} \xrightarrow{1} 1\pi$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

E.g.
$$k = 3$$
: $\phi = \begin{pmatrix} 0 & \nu_2 & 0 \\ 0 & 0 & \nu_3 \\ \nu_1 & 0 \end{pmatrix}$. $\nu_1 \nu_2 \nu_3 = e^{-\beta s} + e^{\beta s}$.
 $\mathbb{Z}_6^{(0)}$:
 $\nu_1 = e^{-\beta s} + e^{\beta s}$
 $\nu_2 = 1$
 $\nu_3 = 1$
 $\mathbb{R}_5 \frac{1}{2\beta} \frac{1}{2\beta} \frac{1}{2\beta} \frac{1}{2\beta} \frac{1}{2\beta} \frac{1}{2\beta} \frac{1}{2\beta} \lim_{s \to \infty} 1 \lim s$

$$\mathbb{Z}_{6}^{(2)}: \text{ periodic up to gauge transformation.}$$

$$\nu_{1} = e^{-\frac{\beta s}{3}} + e^{\frac{\beta s}{3}} \qquad \text{Re } s$$

$$\nu_{2} = e^{-\frac{\beta s}{3}} + e^{\frac{\beta s-2\pi i}{3}} \qquad 1 \qquad 2 \qquad 3 \qquad 1 \qquad 2 \qquad 3$$

$$\nu_{3} = e^{-\frac{\beta s}{3}} + e^{\frac{\beta s-4\pi i}{3}} \qquad \frac{1}{2\beta} \qquad \frac{2}{2\beta} \qquad \frac{3\pi}{2\beta} \qquad \frac{5\pi}{2\beta} \qquad \frac{7\pi}{2\beta} \qquad \frac{9\pi}{2\beta} \qquad \frac{11\pi}{2\beta} \qquad \text{Im } s$$

$$h = \text{diag}(e^{\psi_{i}}) \text{ with } \Delta \psi_{i} = |\nu_{i}|^{2} e^{\psi_{i} - \psi_{i+1}} - |\nu_{i-1}|^{2} e^{\psi_{i-1} - \psi_{i}}.$$

$k = 4, \quad \mathbb{Z}_8^{(0)}, \quad eta/2\pi = 0.28$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$k = 4, \quad \mathbb{Z}_8^{(0)}, \quad eta/2\pi = 0.14$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$k = 4, \quad \mathbb{Z}_8^{(0)}, \quad eta/2\pi = 0.007$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$k = 4, \quad \mathbb{Z}_8^{(2)}, \quad \beta/2\pi = 3.0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$k = 4, \quad \mathbb{Z}_8^{(2)}, \quad eta/2\pi = 2.0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$k = 4, \quad \mathbb{Z}_8^{(2)}, \quad \beta/2\pi = 1.0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$k = 4, \quad \mathbb{Z}_8^{(4)}, \quad \beta/2\pi = 1.2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$k = 4, \quad \mathbb{Z}_8^{(4)}, \quad eta/2\pi = 0.6$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

$k = 4, \quad \mathbb{Z}_8^{(4)}, \quad eta/2\pi = 0.3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Spectral data for monopole chain has a parabolic structure.
- ▶ ∃ spectral data with cyclic symmetry $\mathbb{Z}_{2k}^{(2l)}$.
- ⇒ ∃ cyclic monopole chains assuming Kobayashi-Hitchin correspondence.
- Larger symmetry groups ruled out.
- Ongoing: instanton chains (calorons) with cyclic symmetry (Josh Cork).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ