Math 1580 - Problem Set 9. Due Friday Nov. 18, 4pm

Updated 11/13 to fix a typo in Problem 1. Thanks to Sarah for the catch.

Problem 1. Recall the following method of cofactor expansion to calculate the determinant of an $n \times n$ matrix A. Let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by removing the i th row and j th column, and $a_{i j}$ denote the i, j th entry of A. Then $\operatorname{det}(A)$ can be calculated by fixing a row, say row k, and computing

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{j+k} a_{k j} \operatorname{det}\left(A_{k j}\right)
$$

Similarly, we may fix a column instead, say column k, and compute

$$
\operatorname{det}(A)=\sum_{i=1}^{n}(-1)^{i+k} a_{i k} \operatorname{det}\left(A_{i k}\right)
$$

Given A as above, define the cofactor matrix ${ }^{1} B$ to be the matrix whose i, j entry is

$$
b_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{j i}\right)
$$

(a) Prove that

$$
A B=B A=\operatorname{det}(A) I_{n}
$$

where I_{n} is the identity matrix. Conclude that $\operatorname{provided} \operatorname{det}(A) \neq 0, A^{-1}$ is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} B
$$

(b) Use this to prove that if A has integer entries and $\operatorname{det}(A)= \pm 1$, then A^{-1} has these same properties.
(c) Conclude that the $n \times n$ matrices with integer entries and determinant ± 1 form a group with respect to matrix multiplication, which we call $\mathrm{GL}(n, \mathbb{Z})$.

Problem 2. Let L be a lattice in \mathbb{R}^{n}, and suppose $\operatorname{dim}(L)=n=\operatorname{dim}\left(\mathbb{R}^{n}\right)$. Show that a linearly independent set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subset L$ is a basis for L if and only if

$$
\begin{equation*}
L \cap \mathcal{F}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=0 \tag{1}
\end{equation*}
$$

where $\mathcal{F}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ is the fundamental domain for $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ defined as in class by

$$
\mathcal{F}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\left\{t_{1} \mathbf{v}_{1}+\cdots+t_{n} \mathbf{v}_{n}: 0 \leq t_{i}<1, \text { for all } i\right\}
$$

Some hints:
(a) To show that (1) holds if $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis, suppose that there is a vector $\mathbf{v} \in L \cap$ $\mathcal{F}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ and show that \mathbf{v} must be the zero vector.
(b) To show the other direction, let L^{\prime} be the lattice generated by the \mathbf{v}_{i}, so that $L^{\prime} \subseteq L$. To show that $L \subseteq L^{\prime}$, let $\mathbf{v} \in L$ and write \mathbf{v} as a linear combination (not necessarily with integer entries) of the \mathbf{v}_{i}, and use this to find a vector $\mathbf{v}^{\prime} \in L^{\prime}$ such that $\mathbf{v}-\mathbf{v}^{\prime} \in \mathcal{F}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$. Conclude that \mathbf{v} must equal \mathbf{v}^{\prime}.

[^0]Problem 3. Let $L \subset \mathbb{R}^{m}$ be a lattice with basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. We showed in class how to compute $\operatorname{det}(L)$ as $\mid \operatorname{det}\left(F\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) \mid\right.$ in the case that $m=n$, where

$$
F\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\left(\begin{array}{ccc}
\mid & \cdots & \mid \tag{2}\\
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \\
\mid & \cdots & \mid
\end{array}\right)
$$

is the matrix whose columns consist of the components of the \mathbf{v}_{i} as vectors in \mathbb{R}^{m}.
This problem will give a way to compute this quantity even when $m>n$. Note that in this case, the matrix (2) is still well-defined as a $m \times n$ matrix.
(a) If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in \mathbb{R}^{m}, define the Gram matrix $\operatorname{Gram}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)$ to be the $n \times n$ matrix whose i, j entry is the quantity

$$
\left[\operatorname{Gram}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)\right]_{i j}=\mathbf{v}_{i} \cdot \mathbf{v}_{j}, \quad 1 \leq i, j \leq n .
$$

Show that

$$
\operatorname{Gram}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=F\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)^{\mathrm{T}} F\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)
$$

(b) Show that if $n=m$, then

$$
\begin{equation*}
\operatorname{det}\left(\operatorname{Gram}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)\right)=\operatorname{det}(L)^{2} \tag{3}
\end{equation*}
$$

(c) Show that if $m>n$, then (3) still holds. Here are some hints:
(i) Argue that (3) holds if the \mathbf{v}_{i} all lie in the subspace $\left\{\left(x_{1}, \ldots, x_{m}\right): x_{n+1}=\cdots=x_{m}=0\right\} \subset$ \mathbb{R}^{m}. We will reduce to this case below.
(ii) Remind yourself (or go learn!) that a (real valued) matrix is orthogonal if $\operatorname{det}(R)= \pm 1$, and that such matrices satisfy $R \mathbf{v}_{i} \cdot R \mathbf{v}_{j}=\mathbf{v}_{i} \cdot \mathbf{v}_{j}$. Recall also that a matrix whose columns form a set of orthonormal vectors is an orthogonal matrix, and that orthogonal transformations preserve lengths, areas, volumes and so on. You may assume all these facts.
(iii) Enlarge the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ to a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ for \mathbb{R}^{m} by adding $m-n$ additional independent vectors. Let $\left\{\mathbf{v}_{1}^{*}, \ldots, \mathbf{v}_{m}^{*}\right\}$ be an orthonormal set of vectors obtained from $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ by the Gram-Schmidt procedure. Observe that the subspace spanned by the first n vectors in $\left\{\mathbf{v}_{i}^{*}\right\}$ is the same as that spanned by our original vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
(iv) Form the orthogonal matrix R whose columns are the vectors $\mathbf{v}_{1}^{*}, \ldots, \mathbf{v}_{n}^{*}$. Show that the linear transformation defined by R sends the subspace $\left\{x_{n+1}=\cdots=x_{m}=0\right\}$ to the space spanned by the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Argue that the inverse R^{-1} is also an orthogonal transformation, which does the reverse. Conclude the problem by showing that

$$
\begin{aligned}
& \operatorname{Gram}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\operatorname{Gram}\left(R^{-1} \mathbf{v}_{1}, \ldots, R^{-1} \mathbf{v}_{n}\right), \text { and } \\
& \operatorname{Vol}_{n}\left(\mathcal{F}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)\right)=\operatorname{Vol}_{n}\left(\mathcal{F}\left(R^{-1} \mathbf{v}_{1}, \ldots, R^{-1} \mathbf{v}_{n}\right)\right)
\end{aligned}
$$

using your result from (cii) above.

[^0]: ${ }^{1}$ This is sometimes also called the "adjugate matrix." Very unfortunately, it also sometimes called the "adjoint matrix," which is a terrible practice since there is a different matrix obtained from A which is also called the adjoint and deserves the title much more.

