
Math 1580 – Problem Set 9. Due Friday Nov. 18, 4pm

Updated 11/13 to fix a typo in Problem 1. Thanks to Sarah for the catch.

Problem 1. Recall the following method of cofactor expansion to calculate the determinant of an
n× n matrix A. Let Aij denote the (n− 1)× (n− 1) matrix obtained from A by removing the ith
row and jth column, and aij denote the i, jth entry of A. Then det(A) can be calculated by fixing
a row, say row k, and computing

det(A) =
n∑

j=1

(−1)j+kakj det(Akj)

Similarly, we may fix a column instead, say column k, and compute

det(A) =
n∑

i=1

(−1)i+kaik det(Aik)

Given A as above, define the cofactor matrix1 B to be the matrix whose i, j entry is

bij = (−1)i+j det(Aji)

(a) Prove that

AB = BA = det(A)In

where In is the identity matrix. Conclude that provided det(A) 6= 0, A−1 is given by

A−1 =
1

det(A)
B

(b) Use this to prove that if A has integer entries and det(A) = ±1, then A−1 has these same
properties.

(c) Conclude that the n× n matrices with integer entries and determinant ±1 form a group with
respect to matrix multiplication, which we call GL(n,Z).

Problem 2. Let L be a lattice in Rn, and suppose dim(L) = n = dim(Rn). Show that a linearly
independent set {v1, . . . ,vn} ⊂ L is a basis for L if and only if

L ∩ F(v1, . . . ,vn) = 0 (1)

where F(v1, . . . ,vn) is the fundamental domain for {v1, . . . ,vn} defined as in class by

F(v1, . . . ,vn) = {t1v1 + · · ·+ tnvn : 0 ≤ ti < 1, for all i}

Some hints:

(a) To show that (1) holds if v1, . . . ,vn is a basis, suppose that there is a vector v ∈ L ∩
F(v1, . . . ,vn) and show that v must be the zero vector.

(b) To show the other direction, let L′ be the lattice generated by the vi, so that L′ ⊆ L. To show
that L ⊆ L′, let v ∈ L and write v as a linear combination (not necessarily with integer entries)
of the vi, and use this to find a vector v′ ∈ L′ such that v−v′ ∈ F(v1, . . . ,vn). Conclude that
v must equal v′.

1This is sometimes also called the “adjugate matrix.” Very unfortunately, it also sometimes called the “adjoint
matrix,” which is a terrible practice since there is a different matrix obtained from A which is also called the adjoint
and deserves the title much more.
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Problem 3. Let L ⊂ Rm be a lattice with basis {v1, . . . ,vn} . We showed in class how to compute
det(L) as |det(F (v1, . . . ,vn)| in the case that m = n, where

F (v1, . . . ,vn) =

 | · · · |
v1 · · · vn

| · · · |

 (2)

is the matrix whose columns consist of the components of the vi as vectors in Rm.
This problem will give a way to compute this quantity even when m > n. Note that in this case,

the matrix (2) is still well-defined as a m× n matrix.

(a) If v1, . . . ,vn are vectors in Rm, define the Gram matrix Gram(v1, . . . ,vn) to be the n × n
matrix whose i, j entry is the quantity

[Gram(v1, . . . ,vn)]ij = vi · vj , 1 ≤ i, j ≤ n.

Show that
Gram(v1, . . . ,vn) = F (v1, . . . ,vn)TF (v1, . . . ,vn)

(b) Show that if n = m, then

det
(
Gram(v1, . . . ,vn)

)
= det(L)2. (3)

(c) Show that if m > n, then (3) still holds. Here are some hints:
(i) Argue that (3) holds if the vi all lie in the subspace {(x1, . . . , xm) : xn+1 = · · · = xm = 0} ⊂

Rm. We will reduce to this case below.
(ii) Remind yourself (or go learn!) that a (real valued) matrix is orthogonal if det(R) = ±1,

and that such matrices satisfy Rvi · Rvj = vi · vj . Recall also that a matrix whose
columns form a set of orthonormal vectors is an orthogonal matrix, and that orthogonal
transformations preserve lengths, areas, volumes and so on. You may assume all these
facts.

(iii) Enlarge the set {v1, . . . ,vn} to a basis {v1, . . . ,vm} for Rm by adding m − n additional
independent vectors. Let {v∗1, . . . ,v∗m} be an orthonormal set of vectors obtained from
{v1, . . . ,vm} by the Gram-Schmidt procedure. Observe that the subspace spanned by the
first n vectors in {v∗i } is the same as that spanned by our original vectors {v1, . . . ,vn} .

(iv) Form the orthogonal matrix R whose columns are the vectors v∗1, . . . ,v
∗
n. Show that the

linear transformation defined by R sends the subspace {xn+1 = · · · = xm = 0} to the space
spanned by the vectors v1, . . . ,vn. Argue that the inverse R−1 is also an orthogonal
transformation, which does the reverse. Conclude the problem by showing that

Gram(v1, . . . ,vn) = Gram(R−1v1, . . . , R
−1vn), and

Voln
(
F(v1, . . . ,vn)

)
= Voln

(
F(R−1v1, . . . , R

−1vn)
)

using your result from (cii) above.
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