
Conservative Vector Fields

Theorem (Characterization of Conservative Vector Fields). The following are equivalent for a vector �eld

F(x; y; z) = F1(x; y; z)i+ F2(x; y; z)j+ F3(x; y; z)k : R � R
3
! R

3;

with simply connected domain R � R3.

1. F(x; y; z) is conservative; by de�nition
F = rf

for some scalar function (called a potential function) f : R � R3 ! R.

2. Line integrals between two points are path independent:Z
C1

F � ds =

Z
C2

F � ds

for any two curves C1, C2 with the same starting and ending points.

3. Line integrals over closed curves vanish: I
C

F � ds = 0:

4. F is curl free:
r� F = 0 on R.

Here it is important that R is simply connected.

Proof. In order to show that any of 1)|4) imply the other three, we will prove that

4) =) 3) =) 2) =) 1) =) 4):

First the proof that 4) =) 3). Let C be a closed curve in R. Since R is simply connected, C can be
contracted down to a point without leaving R. This de�nes a surface S (the one swept out by C as it is being
contracted) such that S � R and @S = C. Since r� F = 0 in R, and S � R, we must have r� F = 0 on
S, and therefore by Stokes' Theorem,I

C=@S

F � ds =

ZZ
S

(r� F ) � n dS = 0:

To show that 3) =) 2), suppose C1 and C2 are curves with the same starting and ending points p0 and
p1. De�ne a new curve C which follows C1 from p0 to p1, and then C2 in the reverse direction from p1 back
to p0. Thus

C = C1 � C2 is a closed curve.

By 3),

0 =

I
C

F � ds =

Z
C1

F � ds�

Z
C2

F � ds

so the line integrals over C1 and C2 must be equal.
Next we show 2) =) 1). We need to de�ne a potential function f . First choose an arbitrary point

(x0; y0; z0) 2 R. Next, to de�ne the value of f at (x; y; z), let C be any curve from (x0; y0; z0) to (x; y; z) and
let

f(x; y; z) =

Z
C

F � ds:
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By 3), it doesn't matter which curve we pick; f(x; y; z) only depends on the point (x; y; z) and the point
(x0; y0; z0), so f is a well-de�ned scalar function. Note that if we had chosen a di�erent point (x1; y1; z1)
instead of (x0; y0; z0), we would have obtained a di�erent function g(x; y; z), but

f(x; y; z)� g(x; y; z) =

Z
C0

F � ds = c

where C0 is some curve from (x0; y0; z0) to (x1; y1; z1). The right hand side is just a constant independent of
(x; y; z), so our functions f and g would only di�er by a constant, which is �ne since potential functions are
allowed to di�er by a constant.

It remains to show that rf = F. Let Cx be the curve consisting of straight line segments from (x0; y0; z0)
to (x0; y; z0), then to (x0; y; z), and �nally to (x; y; z). Since Cx connects (x0; y0; z0) to (x; y; z),

f(x; y; z) =

Z
Cx

F � ds =

Z y

y0

F2(x0; t; z0) dt+

Z z

z0

F3(x0; y; t) dt+

Z x

x0

F1(t; y; z) dt

where we have parametrized the three di�erent segments of Cx, and used the fact that dx = dz = 0 on the
�rst, dx = dy = 0 on the second, and dy = dz = 0 on the third. Di�erentiating with respect to x and using
the fundamental theorem of calculus, we �nd

@f

@x
(x; y; z) =

@

@x

�Z y

y0

F2(x0; t; z0) dt+

Z z

z0

F3(x0; y; t) dt+

Z x

x0

F1(t; y; z) dt

�
= F1(x; y; z);

since the third term is the only place that x appears.
Similarly, letting Cy be the curve from (x0; y0; z0) to (x; y0; z0) to (x; y0; z) to (x; y; z), and letting Cz be

the curve from (x0; y0; z0) to (x; y0; z0) to (x; y; z0) to (x; y; z), we �nd

@f

@y
(x; y; z) =

@

@y

 Z
Cy

F � ds

!
= F2(x; y; z)

and
@f

@z
(x; y; z) =

@

@z

�Z
Cz

F � ds

�
= F3(x; y; z):

By the assumption 2), each of these curves is an equally valid choice to use for f , so it must be true that

rf =
@f

@x
i+

@f

@y
j+

@f

@z
k = F1i+ F2j+ F3k = F:

Finally to show that 1) =) 4), we just use the fact that

r� F = r� (rf) = 0

since the curl of a gradient is always zero.
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