Conservative Vector Fields

Theorem (Characterization of Conservative Vector Fields). The following are equivalent for a vector field

$$
\mathbf{F}(x, y, z)=F_{1}(x, y, z) \mathbf{i}+F_{2}(x, y, z) \mathbf{j}+F_{3}(x, y, z) \mathbf{k}: R \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

with simply connected domain $R \subset \mathbb{R}^{3}$.

1. $\mathbf{F}(x, y, z)$ is conservative; by definition

$$
\mathbf{F}=\nabla f
$$

for some scalar function (called a potential function) $f: R \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$.
2. Line integrals between two points are path independent:

$$
\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{s}
$$

for any two curves $\mathcal{C}_{1}, \mathcal{C}_{2}$ with the same starting and ending points.
3. Line integrals over closed curves vanish:

$$
\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}=0
$$

4. \mathbf{F} is curl free:

$$
\nabla \times \mathbf{F}=0 \quad \text { on } R
$$

Here it is important that R is simply connected.
Proof. In order to show that any of 1)—4) imply the other three, we will prove that

$$
4) \Longrightarrow 3) \Longrightarrow 2) \Longrightarrow 1) \Longrightarrow 4)
$$

First the proof that 4$) \Longrightarrow 3$). Let \mathcal{C} be a closed curve in R. Since R is simply connected, \mathcal{C} can be contracted down to a point without leaving R. This defines a surface \mathcal{S} (the one swept out by \mathcal{C} as it is being contracted) such that $\mathcal{S} \subset R$ and $\partial \mathcal{S}=\mathcal{C}$. Since $\nabla \times \mathbf{F}=0$ in R, and $\mathcal{S} \subset R$, we must have $\nabla \times \mathbf{F}=0$ on \mathcal{S}, and therefore by Stokes' Theorem,

$$
\oint_{\mathcal{C}=\partial \mathcal{S}} \mathbf{F} \cdot d \mathbf{s}=\iint_{\mathcal{S}}(\nabla \times F) \cdot \mathbf{n} d S=0 .
$$

To show that 3$) \Longrightarrow 2$), suppose \mathcal{C}_{1} and \mathcal{C}_{2} are curves with the same starting and ending points \mathbf{p}_{0} and \mathbf{p}_{1}. Define a new curve \mathcal{C} which follows \mathcal{C}_{1} from \mathbf{p}_{0} to \mathbf{p}_{1}, and then \mathcal{C}_{2} in the reverse direction from \mathbf{p}_{1} back to \mathbf{p}_{0}. Thus

$$
\mathcal{C}=\mathcal{C}_{1}-\mathcal{C}_{2} \quad \text { is a closed curve. }
$$

By 3),

$$
0=\oint_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{s}-\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{s}
$$

so the line integrals over \mathcal{C}_{1} and \mathcal{C}_{2} must be equal.
Next we show 2) $\Longrightarrow 1$). We need to define a potential function f. First choose an arbitrary point $\left(x_{0}, y_{0}, z_{0}\right) \in R$. Next, to define the value of f at (x, y, z), let \mathcal{C} be any curve from $\left(x_{0}, y_{0}, z_{0}\right)$ to (x, y, z) and let

$$
f(x, y, z)=\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{s}
$$

By 3), it doesn't matter which curve we pick; $f(x, y, z)$ only depends on the point (x, y, z) and the point $\left(x_{0}, y_{0}, z_{0}\right)$, so f is a well-defined scalar function. Note that if we had chosen a different point $\left(x_{1}, y_{1}, z_{1}\right)$ instead of $\left(x_{0}, y_{0}, z_{0}\right)$, we would have obtained a different function $g(x, y, z)$, but

$$
f(x, y, z)-g(x, y, z)=\int_{\mathcal{C}^{\prime}} \mathbf{F} \cdot d \mathbf{s}=c
$$

where \mathcal{C}^{\prime} is some curve from $\left(x_{0}, y_{0}, z_{0}\right)$ to $\left(x_{1}, y_{1}, z_{1}\right)$. The right hand side is just a constant independent of (x, y, z), so our functions f and g would only differ by a constant, which is fine since potential functions are allowed to differ by a constant.

It remains to show that $\nabla f=\mathbf{F}$. Let \mathcal{C}_{x} be the curve consisting of straight line segments from $\left(x_{0}, y_{0}, z_{0}\right)$ to $\left(x_{0}, y, z_{0}\right)$, then to $\left(x_{0}, y, z\right)$, and finally to (x, y, z). Since \mathcal{C}_{x} connects $\left(x_{0}, y_{0}, z_{0}\right)$ to (x, y, z),

$$
f(x, y, z)=\int_{\mathcal{C}_{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{y_{0}}^{y} F_{2}\left(x_{0}, t, z_{0}\right) d t+\int_{z_{0}}^{z} F_{3}\left(x_{0}, y, t\right) d t+\int_{x_{0}}^{x} F_{1}(t, y, z) d t
$$

where we have parametrized the three different segments of \mathcal{C}_{x}, and used the fact that $d x=d z=0$ on the first, $d x=d y=0$ on the second, and $d y=d z=0$ on the third. Differentiating with respect to x and using the fundamental theorem of calculus, we find

$$
\frac{\partial f}{\partial x}(x, y, z)=\frac{\partial}{\partial x}\left(\int_{y_{0}}^{y} F_{2}\left(x_{0}, t, z_{0}\right) d t+\int_{z_{0}}^{z} F_{3}\left(x_{0}, y, t\right) d t+\int_{x_{0}}^{x} F_{1}(t, y, z) d t\right)=F_{1}(x, y, z)
$$

since the third term is the only place that x appears.
Similarly, letting \mathcal{C}_{y} be the curve from $\left(x_{0}, y_{0}, z_{0}\right)$ to $\left(x, y_{0}, z_{0}\right)$ to $\left(x, y_{0}, z\right)$ to (x, y, z), and letting \mathcal{C}_{z} be the curve from $\left(x_{0}, y_{0}, z_{0}\right)$ to $\left(x, y_{0}, z_{0}\right)$ to $\left(x, y, z_{0}\right)$ to (x, y, z), we find

$$
\frac{\partial f}{\partial y}(x, y, z)=\frac{\partial}{\partial y}\left(\int_{\mathcal{C}_{y}} \mathbf{F} \cdot d \mathbf{s}\right)=F_{2}(x, y, z)
$$

and

$$
\frac{\partial f}{\partial z}(x, y, z)=\frac{\partial}{\partial z}\left(\int_{\mathcal{C}_{z}} \mathbf{F} \cdot d \mathbf{s}\right)=F_{3}(x, y, z) .
$$

By the assumption 2), each of these curves is an equally valid choice to use for f, so it must be true that

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}=F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}=\mathbf{F}
$$

Finally to show that 1$) \Longrightarrow 4$), we just use the fact that

$$
\nabla \times \mathbf{F}=\nabla \times(\nabla f)=0
$$

since the curl of a gradient is always zero.

