Conservative Vector Fields

Theorem (Characterization of Conservative Vector Fields). The following are equivalent for a vector field
F(mvyaz) = Fl(x,y,z)i + Fz(m,y,z)j + F3(.Z’,y,2)k ‘R C RS - ]Rgv
with simply connected domain R C R3.

1. F(z,y,2) is conservative; by definition
F=Vf

for some scalar function (called a potential function) f: R C R® — R.

2. Line integrals between two points are path independent:

/ F-ds:/ F -ds
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for any two curves C1, Co with the same starting and ending points.

%F-ds:o.
c

VxF=0 onR.

3. Line integrals over closed curves vanish:

4. F is curl free:

Here it is important that R is simply connected.

Proof. In order to show that any of 1)—4) imply the other three, we will prove that
4) = 3) = 2) = 1) = 4).

First the proof that 4) = 3). Let C be a closed curve in R. Since R is simply connected, C can be
contracted down to a point without leaving R. This defines a surface S (the one swept out by C as it is being
contracted) such that S C R and 0§ = C. Since Vx F =0in R, and S C R, we must have V x F =0 on
S, and therefore by Stokes” Theorem,

i:aSF.dS://S(VXF)'ndSZO'

To show that 3) = 2), suppose C; and Cs are curves with the same starting and ending points pg and
p1. Define a new curve C which follows C; from pg to p1, and then Cy in the reverse direction from p; back
to po. Thus

C=C, —Cy 1is a closed curve.
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so the line integrals over C; and Cs; must be equal.
Next we show 2) = 1). We need to define a potential function f. First choose an arbitrary point

(20,0, 20) € R. Next, to define the value of f at (z,y, z), let C be any curve from (zg, yo, 20) to (z,y, z) and
let

By 3),

flz,y,2) = /CF-ds.



By 3), it doesn’t matter which curve we pick; f(z,y, z) only depends on the point (z,y,z) and the point
(z0, Y0, 20), S0 f is a well-defined scalar function. Note that if we had chosen a different point (z1,y1,21)
instead of (zg, Yo, 20), we would have obtained a different function g(z,y, z), but

f(z,y,2) —g(x,y,2) :/,F-dS:c

where C' is some curve from (zg, yo, z0) to (1,¥1,21). The right hand side is just a constant independent of
(2,9, z), so our functions f and g would only differ by a constant, which is fine since potential functions are
allowed to differ by a constant.

It remains to show that Vf = F. Let C, be the curve consisting of straight line segments from (zg, yo, o)
to (zo,¥, 20), then to (zo,y, z), and finally to (z,y, z). Since C, connects (zq, Yo, 20) to (z,y,2),

Yy z x
f<w,y,z>=/ F-ds = F2<wo,t,zo>dt+/ F3<xo,y,t)dt+/ Filt,y,2) dt
C zZ0 zo

z Yo

where we have parametrized the three different segments of C,, and used the fact that dz = dz = 0 on the
first, dr = dy = 0 on the second, and dy = dz = 0 on the third. Differentiating with respect to z and using
the fundamental theorem of calculus, we find
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since the third term is the only place that = appears.
Similarly, letting C, be the curve from (zo,yo, 20) to (2, Yo, 20) to (z,y0,2) to (z,y,2), and letting C, be
the curve from (zg, Yo, 20) to (z,yo, 20) to (z,y, 20) to (z,y, z), we find

0 0
Fz(xayaz) = aiy (/CdeS> :F2($7yaz)

0 0
a—ﬁ(m,y,z) = E </Cdes> :Fg(.’IJ,y,Z).

By the assumption 2), each of these curves is an equally valid choice to use for f, so it must be true that

0 0 0
Vf:li+lj+lk:F1i+F2j+F3k:F'
oz Oy~ 0z

and

Finally to show that 1) = 4), we just use the fact that
VXF=Vx(Vf)=0

since the curl of a gradient is always zero. O



