Conservative Vector Fields

Theorem (Characterization of Conservative Vector Fields). The following are equivalent for a vector field

$$\mathbf{F}(x, y, z) = F_1(x, y, z)\mathbf{i} + F_2(x, y, z)\mathbf{j} + F_3(x, y, z)\mathbf{k} : R \subset \mathbb{R}^3 \to \mathbb{R}^3,$$

with simply connected domain $R \subset \mathbb{R}^3$.

1. $\mathbf{F}(x, y, z)$ is *conservative*; by definition

$$\mathbf{F} = \nabla f$$

- for some scalar function (called a *potential function*) $f : R \subset \mathbb{R}^3 \to \mathbb{R}$.
- 2. Line integrals between two points are *path independent*:

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{s}$$

for any two curves C_1 , C_2 with the same starting and ending points.

3. Line integrals over closed curves vanish:

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = 0$$

4. **F** is curl free:

 $\nabla \times \mathbf{F} = 0$ on R.

Here it is important that R is simply connected.

Proof. In order to show that any of 1)—4) imply the other three, we will prove that

$$4) \implies 3) \implies 2) \implies 1) \implies 4).$$

First the proof that 4) \implies 3). Let \mathcal{C} be a closed curve in R. Since R is simply connected, \mathcal{C} can be contracted down to a point without leaving R. This defines a surface \mathcal{S} (the one swept out by \mathcal{C} as it is being contracted) such that $\mathcal{S} \subset R$ and $\partial \mathcal{S} = \mathcal{C}$. Since $\nabla \times \mathbf{F} = 0$ in R, and $\mathcal{S} \subset R$, we must have $\nabla \times \mathbf{F} = 0$ on \mathcal{S} , and therefore by Stokes' Theorem,

$$\oint_{\mathcal{C}=\partial \mathcal{S}} \mathbf{F} \cdot d\mathbf{s} = \iint_{\mathcal{S}} \left(\nabla \times F \right) \cdot \mathbf{n} \, dS = 0$$

To show that 3) \implies 2), suppose C_1 and C_2 are curves with the same starting and ending points \mathbf{p}_0 and \mathbf{p}_1 . Define a new curve C which follows C_1 from \mathbf{p}_0 to \mathbf{p}_1 , and then C_2 in the reverse direction from \mathbf{p}_1 back to \mathbf{p}_0 . Thus

$$\mathcal{C} = \mathcal{C}_1 - \mathcal{C}_2$$
 is a closed curve

By 3),

$$0 = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{s} - \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{s}$$

so the line integrals over C_1 and C_2 must be equal.

Next we show 2) \implies 1). We need to define a potential function f. First choose an arbitrary point $(x_0, y_0, z_0) \in R$. Next, to define the value of f at (x, y, z), let C be any curve from (x_0, y_0, z_0) to (x, y, z) and let

$$f(x, y, z) = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}.$$

By 3), it doesn't matter which curve we pick; f(x, y, z) only depends on the point (x, y, z) and the point (x_0, y_0, z_0) , so f is a well-defined scalar function. Note that if we had chosen a different point (x_1, y_1, z_1) instead of (x_0, y_0, z_0) , we would have obtained a different function g(x, y, z), but

$$f(x, y, z) - g(x, y, z) = \int_{\mathcal{C}'} \mathbf{F} \cdot d\mathbf{s} = c$$

where C' is some curve from (x_0, y_0, z_0) to (x_1, y_1, z_1) . The right hand side is just a constant independent of (x, y, z), so our functions f and g would only differ by a constant, which is fine since potential functions are allowed to differ by a constant.

It remains to show that $\nabla f = \mathbf{F}$. Let \mathcal{C}_x be the curve consisting of straight line segments from (x_0, y_0, z_0) to (x_0, y, z_0) , then to (x_0, y, z) , and finally to (x, y, z). Since \mathcal{C}_x connects (x_0, y_0, z_0) to (x, y, z),

$$f(x, y, z) = \int_{\mathcal{C}_x} \mathbf{F} \cdot d\mathbf{s} = \int_{y_0}^y F_2(x_0, t, z_0) dt + \int_{z_0}^z F_3(x_0, y, t) dt + \int_{x_0}^x F_1(t, y, z) dt$$

where we have parametrized the three different segments of C_x , and used the fact that dx = dz = 0 on the first, dx = dy = 0 on the second, and dy = dz = 0 on the third. Differentiating with respect to x and using the fundamental theorem of calculus, we find

$$\frac{\partial f}{\partial x}(x,y,z) = \frac{\partial}{\partial x} \left(\int_{y_0}^y F_2(x_0,t,z_0) \, dt + \int_{z_0}^z F_3(x_0,y,t) \, dt + \int_{x_0}^x F_1(t,y,z) \, dt \right) = F_1(x,y,z),$$

since the third term is the only place that x appears.

Similarly, letting C_y be the curve from (x_0, y_0, z_0) to (x, y_0, z_0) to (x, y_0, z) to (x, y, z), and letting C_z be the curve from (x_0, y_0, z_0) to (x, y_0, z_0) to (x, y, z_0) to (x, y, z), we find

$$\frac{\partial f}{\partial y}(x,y,z) = \frac{\partial}{\partial y} \left(\int_{\mathcal{C}_y} \mathbf{F} \cdot d\mathbf{s} \right) = F_2(x,y,z)$$

and

$$\frac{\partial f}{\partial z}(x,y,z) = \frac{\partial}{\partial z} \left(\int_{\mathcal{C}_z} \mathbf{F} \cdot d\mathbf{s} \right) = F_3(x,y,z).$$

By the assumption 2), each of these curves is an equally valid choice to use for f, so it must be true that

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k} = F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k} = \mathbf{F}.$$

Finally to show that 1) \implies 4), we just use the fact that

$$\nabla \times \mathbf{F} = \nabla \times (\nabla f) = 0$$

since the curl of a gradient is always zero.