Math 350 Problem Set 6 Solutions to Part I

Part I

1. Additivity over general regions. Call a region $A \subset \mathbb{R}^{2}$ "nice" if its boundary consists of a piecewise set of differentiable curves. Let A and B be nice regions, with $B \subset A$. Let C be the set of points which are in A but not in B :

$$
C=A \backslash B=\{(x, y) \mid(x, y) \in A,(x, y) \notin B\}
$$

(a) (8pts) Show that, if f is continuous (or even bounded, with a nice set of discontinuities), then

$$
\iint_{A} f d A=\iint_{B} f d A+\iint_{C} f d A
$$

(Hint: Recall how $\iint_{A} f d A$ is defined: $\iint_{A} f d A=\iint_{R} f^{*} d A$ for an auxilliary function f^{*} such that $f^{*}=f$ on A and 0 otherwise. If f^{*} is such a function for A, and $f^{* *}$ is such a function for B, what is $f^{*}-f^{* *}$?)
(b) (7pts) Iterate this to prove that, if $A=\bigcup_{i=1}^{N} A_{i}$ is a decomposition of a nice set A into N pieces which are also nice, then

$$
\iint_{A} f d A=\sum_{i=1}^{N} \iint_{A_{i}} f d A
$$

Let $R \subset \mathbb{R}^{2}$ be a rectangle containing A (and hence also containing B and C). By definition,

$$
\iint_{B} f d A=\iint_{R} f_{B} d A, \quad \text { and } \quad \iint_{C} f d A=\iint_{R} f_{C} d A
$$

where

$$
f_{B}(x, y)= \begin{cases}f(x, y) & (x, y) \in B \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{C}(x, y)= \begin{cases}f(x, y) & (x, y) \in C \\ 0 & \text { otherwise }\end{cases}
$$

Since $(x, y) \in A$ means that either $(x, y) \in B$ or $(x, y) \in C$, but not both, we have

$$
f_{B}(x, y)+f_{C}(x, y)=f_{A}(x, y)= \begin{cases}f(x, y) & (x, y) \in A \\ 0 & \text { otherwise }\end{cases}
$$

By linearity of the integral,
$\iint_{A} f d A=\iint_{R} f_{A} d A=\iint_{R}\left(f_{B}+f_{C}\right) d A=\iint_{R} f_{B} d A+\iint_{R} f_{C} d A=\iint_{B} f d A+\iint_{C} f d A$.
and we're done.
Now if $A=\bigcup_{i=1}^{N} A_{i}$ is a decomposition into disjoint sets, we have

$$
\begin{aligned}
& \iint_{A} f d A=\iint_{A_{1}} f d A+\iint_{A_{2} \cup \cdots \cup A_{N}} f d A \\
&=\iint_{A_{1}} f d A+\iint_{A_{2}} f d A+\iint_{A_{3} \cup \cdots \cup A_{N}} f d A=\cdots
\end{aligned}
$$

$$
=\sum_{i=1}^{N} \iint_{A_{i}} f d A
$$

2. Generalized cones. Let R be a nice region of \mathbb{R}^{2}. The cone over R, with height h, is the set of all points between $(0,0, h)$ and $(x, y, 0)$ where $(x, y) \in R$:

$$
C_{h}(R)=\{t(0,0, h)+(1-t)(x, y, 0) \mid(x, y) \in R, 0 \leq t \leq 1\}
$$

(a) (3pts) Draw a sketch of $C_{h}(R)$, so you can see what's going on.
(b) (12pts) By setting up and evaluating a triple integral, prove that

$$
\operatorname{Vol}\left(C_{h}(R)\right)=\frac{1}{3} h \operatorname{Area}(R)
$$

(Hints: Think about the cross sections $z=$ const. How do lengths in these cross sections scale with z ? How does the area of the cross section scale with z ? Your integral will probably be an iterated integral in $d z$ and $d A$.)

The area of R is given by

$$
\iint_{R} d A
$$

and if we scale all lengths in R by a factor a, the new area will be

$$
a^{2} \iint_{R} d A .
$$

For each $z \in[0, h]$, the cross section of $C_{h}(R)$ is a copy of R, with all lengths scaled by a factor of $(h-z) / h$. Thus the volume of $C_{h}(R)$ is

$$
\int_{0}^{h} \frac{(h-z)^{2}}{h^{2}} \iint_{R} d A d z=\iint_{R} \int_{0}^{h} \frac{(h-z)^{2}}{h^{2}} d z d A=\iint_{R}\left(\frac{-(h-z)^{3}}{3 h^{2}}\right)_{z=0}^{z=h} d A=\iint_{R} \frac{h}{3} d A=\frac{1}{3} h \operatorname{Area}(R) .
$$

