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Introduction

Fiber bundles, especially vector bundles, are ubiquitous in mathematics. Given
a space B, we would like to classify all vector bundles on B up to isomorphism.
While we accomplish this in a certain sense by showing that any vector bundle
E −→ B is isomorphic to the pullback of a ‘universal vector bundle’ E′ −→ B′

(depending on the rank and field of definition) by a map f : B −→ B′ which is
unique up to homotopy, in practice it is difficult to compute the homotopy class of
this ‘classifying map.’

We can nevertheless (functorially) associate some invariants to vector bundles
on B which may help us to distinguish them. (Compare the problem of classifying
spaces up to homeomorphism, and the partial solution of associating functorial
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invariants such as (co)homology and homotopy groups.) These invariants will be
cohomology classes on B called characteristic classes. In fact all characteristic
classes arise as cohomology classes of the universal spaces B′.

1. Bundles

Definition 1.1. A fiber bundle is a triple (π,E,B) consisting of a locally trivial,
continuous surjection

π : E −→ B

from the total space E to the base space B. Here ‘locally trivial’ means that
for all b ∈ B, there is an open neighborhood U 3 b whose preimage π−1(U) is
homeomorphic to the product of U with a fixed fiber space F , in such a way that
the following diagram commutes:

π−1(U) U × F

U

∼=

π
pr1

(pr1 denotes projection onto the first factor.) As a matter of notation, the fiber
bundle (π,E,B) is often denoted just by E or π. It follows that for each b ∈ B, the
fiber over b (which will be denoted by π−1(b) or Eb) is homeomorphic to F.

Definition 1.2. A morphism of fiber bundles f : (π,E,B) −→ (π′, E′, B′) con-

sists of continuous maps f : E −→ E′ and f̃ : B −→ B′ such that

E E′

B B′

f

π′

f̃

π

commutes. We often denote the morphism simply by f : E −→ E′, and say that f is

a morphism over the map f̃ : B −→ B′. In particular, observe that f maps fibers

to fibers; i.e. for b ∈ B, f restricts to a map f : F ∼= π−1(b) −→ π′
−1(

f̃(b)
) ∼= F ′.

With these definitions, it is easy to verify that fiber bundles form a category. In
addition, we can fix the base space B, and speak of the category of fiber bundles
over B, where the morphisms are required to lie over the identity map Id : B −→ B.

Example 1.3. The basic example of a fiber bundle over B with fiber space F is
the product E = B × F, with projection onto the first factor. This is known as
the trivial bundle, and we say that any bundle E is trivial if it is isomorphic to
B × F.

1.1. Pullback. Perhaps the most important way of obtaining new fiber bundles
from existing ones is via pullback.

Proposition 1.4. If π : E −→ B is a fiber bundle with fiber space F and if
f : A −→ B is a continuous map, then the pullback

f∗(E) ≡ A×B E = {(a, e) ∈ A× E : f(a) = π(e)}
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is a fiber bundle over A, also with fiber space F , and there is a canonical morphism
pr2 : f∗(E) −→ E lying over f :

f∗(E) E

A B

pr2

π

f

pr1

Furthermore, any morphism f : (π,E,B) −→ (π′, E′, B′) of fiber bundles factors

as the composition of a morphism φ : E −→ f̃∗(E′) over Id : B −→ B followed by

the canonical morphism pr2 : f̃∗(E′) −→ E′, where f̃ : B −→ B′ is map on base
spaces induced from f.

Proof. The diagram is an immediate consequence (really the universal defining
property) of the pullback operation. To verify that pr1 : f∗(E) −→ A is a fiber

bundle, consider a trivialization h : π−1(U)
∼=−→ U × F over U ⊂ B and let V =

f−1(U) ⊂ A. The trivialization composed with a projection defines a continuous
map

pr−11 (V ) =
{

(a, e) ∈ V × π−1(U) : f(a) = π(e)
} 1×h−→

{(a, b, z) ∈ V × U × F : f(a) = b} −→ {(a, z)} = V × F.

This has a continuous inverse given by (a, z) 7−→
(
a, h−1(f(a), z)

)
.

The second claim follows directly from the universal property of pullback. �

Example 1.5 (Restriction). A special example of pullback is restriction to a sub-
space, in which A ⊂ B and f is the inclusion map. In this case it is easily seen that
f∗(E) = π−1(A) ⊂ E.

1.2. Sections. A fiber bundle π : E −→ B is the setting for a special class of maps
B −→ E called sections.

Definition 1.6. A (global) section of π : E −→ B is a continuous map s : B −→
E such that π ◦ s = Id. Thus s maps points b ∈ B to points in the fibers π−1(b).

More generally, for a subspace U ⊂ B, a (local) section over U is a map
s : U −→ E such that π ◦ s = IdU . The set of sections of E over U will be denoted
Γ(U,E), and we write Γ(E) := Γ(B,E) for global sections.

A fiber bundle may or may not admit global sections (we’ll see this most clearly
in the case of principal bundles), but it always admits local sections:

Proposition 1.7. If E −→ B has a local trivialization h : π−1(U) −→ U ×F then
sections s ∈ Γ(U,E) are in bijection with continuous maps s̃ ∈ Map(U,F ).

Proof. Sections s : U −→ π−1(U) can be composed with h to obtain maps of the
form h ◦ s : U 3 b 7−→ (b, s̃(b)) ∈ U × F , and conversely, given s̃ : U −→ F ,
b 7−→ h−1(b, s̃(b)) is a section. �
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1.3. Fiber bundles as fibrations. Recall that a fibration is a map p : E −→ B
which satisfies the homotopy lifting property (HLP) that every homotopy f :

A × I −→ B and map f̃0 : A × 0 −→ E lifts to a homotopy f̃ : A × I −→ E such

that f̃ |A× 0 ≡ f̃0 and p ◦ f̃ = f.
It is easy to see that a trivial fiber bundle is a fibration, and hence every fiber

bundle is in some sense a ‘local fibration,’ in that homotopies may be lifted locally
on sets over which the bundle is trivial. In fact, with some conditions on the base
space, it is possible to show that a local fibration in this sense is indeed a fibration.
The proof of the following theorem is rather technical and will be omitted.

Theorem 1.8. If (π,E,B) is a fiber bundle and B is paracompact, then (π,E,B)
is a fibration.

Remark. In fact all that is needed is the existence of a single locally finite cover of
B by open sets over which E is trivial and which admits a subordinate partition
of unity (the condition of paracompactness implies that every open cover has a
refinement with this property). Such a cover is called numerable, and E is called
a ‘numerable fiber bundle.’ See [Dol63].

From this point on, we shall assume that all base spaces are paracompact, a
condition which is satisfied in practice by essentially all spaces of interest, including
manifolds and CW complexes, and therefore that fiber bundles are fibrations. In
particular, under this assumption it follows that to each fiber bundle (π,E,B) with
fiber F we have a long exact sequence of homotopy groups

· · · −→ πn(F ) −→ πn(E) −→ πn(B) −→ πn−1(F ) −→ · · ·

In practice we are most often interested in categories of fiber bundles where the
fiber spaces F are equipped with some algebraic structure, most notably that of a
vector space in the case of vector bundles (or so-called ‘G-torsors’ in the case of
principal bundles). This can be formulated by saying that we are choosing some
particular class of automorphisms of F and requiring that Aut(F ) to be preserved
by the bundle morphisms, trivializations and so on. For instance, a vector space
V is a topological space, but we are mostly interested in maps which preserve the
linear structure and so we consider Aut(V ) = GL(V ) instead of Homeo(V ). We refer
to Aut(F ) as the structure group of F. The general theory of fiber bundles with
fixed structure group is neatly encapsulated by the machinery of principal bundles.
However, we will next talk about vector bundles since these are the objects of
primary interest.

2. Vector bundles

Let F denote either R or C. Briefly, a vector bundle is a fiber bundle with
structure group GL(n,F). More precisely,

Definition 2.1. A vector bundle of rank n is a fiber bundle (π,E,B) whose
fibers π−1(b) have the structure of n dimensional vector spaces over F, and whose
local trivializations hU : π−1(U) ∼= U × Fn restrict to linear isomorphisms hU :
π−1(b) ∼= {b} × Fn. A rank 1 bundle is often referred to as a line bundle.

A morphism of vector bundles is a fiber bundle morphism which restricts to a
linear map on each fiber.
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Example 2.2. A smooth n-manifold M has a canonical tangent bundle TM −→
M which is a rank n real vector bundle. If L −→ M is an embedding of another
smooth manifold of dimension l, then there are several canonical vector bundles over
L. In addition to the (intrinsic) tangent bundle TL −→ L, there is the restriction
of TM to L, and the normal bundle NL = TM/TL −→ L. In the last example,
the quotient means that at each point p ∈ L, the fiber space is the linear quotient
TMp/TLp.

Example 2.3. For any space B, we may form the trivial vector bundle

Fn := B × Fn,
and as before say that any vector bundle over B isomorphic to B × Fn is trivial.

As an exercise, consider the embedding Sn ⊂ Rn+1 as

Rn+1 ⊃ Sn
{

(x1, . . . , xn+1) : x21 + · · ·+ x2n+1 = 1
}

and show that that normal bundle NSn −→ Sn with respect to this embedding is
a trivial line bundle.

Example 2.4. Consider the manifold CPn consisting of the set of complex lines{
l ⊂ Cn+1

}
. in Cn+1. Form the trivial bundle Cn+1 −→ CPn and consider the

subbundle

γ1n :=
{

(l, v) ∈ CPn × Cn+1 : v ∈ l
}
⊂ Cn+1 −→ CPn

Equipped with the projection onto the first factor, this forms a complex rank 1
vector bundle over CPn called the canonical complex line bundle.

The canonical real line bundle γ1n −→ RPn is defined similarly as

γ1n :=
{

(l, v) ∈ RPn × Rn+1 : v ∈ l
}
⊂ Rn+1 −→ RPn

2.1. Whitney sum. The pullback construction for fiber bundles specializes to the
category of vector bundles; the proof of the following is straightforward and left to
the reader.

Proposition 2.5. If π : E −→ B is a rank n vector bundle and f : A −→ B a
continuous map, then f∗(E) −→ A is a rank n vector bundle admitting a vector
bundle morphism f∗(E) −→ E over f.

An important instance of this is the following. First of all, given vector bundles
(π1, E1, B1), (π2, E2, B2), the product

π1 × π2 : E1 × E2 −→ B1 ×B2

is a vector bundle over B1×B2. If the fibers of Ei are denoted by Vi ∼= Fni , i = 1, 2,
then it is easily seen that E1 ×E2 has fibers V1 × V2 ≡ V1 ⊕ V2 ∼= Fn1+n2 . There is
an analogous construction in the category of vector bundles over a fixed base B.

Definition 2.6. Given two vector bundles πi : Ei −→ B, i = 1, 2 over the same
base, the Whitney sum is the vector bundle denoted E1 ⊕ E2 which is given by
restricting E1 × E2 −→ B ×B to the diagonal Diag : B ⊂ B ×B. In other words,

E1 ⊕ E2 := Diag∗(E1 × E2) −→ B,

where Diag : b 7−→ (b, b). The Whitney sum has fibers isomorphic to Fn1 ⊕ Fn2

where ni = rank(Ei).
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2.2. Sections of vector bundles. Since the fibers of a vector bundle (π,E,B)
have a linear structure, it follows that sections Γ(U,E) of E form a vector space.
In other words, given two sections s1, s2 ∈ Γ(U,E), the linear combinations

(a1s1 + a2s2) : b 7−→
(
a1s1(b) + a2s2(b)

)
∈ Eb, ai ∈ F

are again in Γ(U,E). Vector bundles always have at least one (global) section,
namely the zero section z which is given by z(b) = 0 for all b. This is well-defined
since the point 0 ∈ Fn is preserved by all linear isomorphisms.

There is a characterization of trivial vector bundles in terms of sections; though
this is a direct consequence of Proposition 3.4, we will give a direct proof for vector
bundles here.

Proposition 2.7. A rank n vector bundle π : E −→ B is trivial over U ⊂ B if and
only if there exists a collection of n linearly independent sections (called a frame)
{s1, . . . , sn} ∈ Γ(U,E). Here linear independence means that for each b ∈ U , the
set {s1(b), . . . , sn(b)} is linearly independent. (In particular each section is nowhere
vanishing.)

Proof. If h : π−1(U) ∼= U × Fn is a trivialization, then si : b 7−→ h−1(b, ei),
i = 1, . . . , n give such a collection, where ei denotes the ith standard basis vector
for Fn.

Conversely, given {s1, . . . , sn}, we may form a trivialization h : U×Fn ∼= π−1(U)
by

h :
(
b,
∑

aiei

)
7−→

∑
aisi(b).

Linear independence and dimensional considerations show this to be an isomor-
phism for each fixed b. �

2.3. Inner products. An inner product on a vector bundle E −→ B is a map
〈·, ·〉 : E ⊕ E −→ F such that 〈·, ·〉 restricts to a symmetric (in case F = R) or
Hermitian (in case F = C) positive definite bilinear form on each fiber.

Proposition 2.8. If B is paracompact, then any vector bundle E −→ B admits
an inner product.

Proof. Paracompactness means that B has a locally finite covering {Uα} with a

subordinate partition of unity {φα}, meaning that φα : B −→ [0, 1], φ−1α (0, 1] ⊂ Uα
and

∑
α φα ≡ 1. Refining if necessary, we may assume that E has local trivializa-

tions hα : π−1(Uα) −→ Uα × Fn.
Over each trivialization we have an inner product by pulling back the standard

inner product on Fn by the hα, and we may sum these using the partition of unity:

〈v, w〉 :=
∑
α

φα(π(v)) 〈hα(v), hα(w)〉Fn .

By paracompactness the sum is locally finite, and since inner products are closed
under convex combinations, the result follows. �

We will return to vector bundles and their characteristic classes once we have
developed the machinery of principal bundles.
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3. Principal Bundles

Principal bundles are so named because they give rise via the associated bundle
construction below to all fiber bundles, with arbitrary structure groups.

Definition 3.1. Fix a topological group G. A principal G-bundle over a space
B is a fiber bundle (π, P,B) with a free and transitive right action by G on the
fibers.

Recall that a free action is one such that p · g = p iff g = e, and transitivity
means that for p, p′ ∈ π−1(b), there exists a g ∈ G such that p · g = p′ (which is
unique in light of freeness).

It follows that P has fiber space homeomorphic to G, and we require that local
trivializations h : π−1(U) ∼= U×G intertwine the right action with right translation:
h(p) = (u, g) =⇒ h(p · g′) = (u, gg′).

An equivalent definition is that P is a space with a free right G action such that
B is the quotient π : P −→ P/G = B, with a corresponding local trivialization
condition.

The existence of a unique g ∈ G relating any two p, p′ ∈ π−1(b) defines a trans-
lation function on the fibers:

(1) (p, p′) ∈ P 2
b 7−→ τ(p, p′) ∈ G, such that p · τ(p, p′) = p′,

which will be occasionally useful.

Remark. It is important to note that a principal G-bundle is different from a fiber
bundle whose fibers are equipped with a group structure isomorphic to G. In par-
ticular, there is no canonical identity e in a fiber; rather the fibers of P have the
structure of so-called ‘G-torsors,’ which are to groups what affine spaces are to
vector spaces.

Another difference can be seen by comparing two different local trivializations
hi : π−1(U) ∼= U×G, i = 1, 2. For a fiber bundle with a group structure these would
differ by h2 ◦ h−11 : (b, g) 7−→ (b, φ(b)g) where the φ(b) are group isomomorphisms.
For a principal bundle on the other hand, the transition functions b 7−→ φ(b) must
be right translations by elements of G, and are not even homomorphisms.

3.1. Morphisms.

Definition 3.2. A morphism of principal G-bundles φ : (π1, P1, B1) −→
(π2, P2, B2) is a fiber bundle morphism which intertwines the G actions; i.e. φ(p ·
g) = φ(p) · g. (We also say φ is equivariant with respect to the G actions.)

In fact any equivariant map φ : P1 −→ P2 is a principal bundle morphism since

φ(p · g) = φ(p) · g means that φ maps fibers to fibers, hence φ̃(b) := π2
(
φ(p)

)
is

well-defined for any choice of p ∈ π−11 (b) and specifies the base map φ̃ : B1 −→ B2

uniquely.

It turns out that morphisms of G-bundles over B are tightly constrained:

Proposition 3.3. Let P and P ′ be principal G-bundles over B. If φ : P −→ P ′ is
a morphism lying over Id : B −→ B, then φ is an isomorphism.

Proof. To see that φ is injective, suppose φ(p) = φ(q) for two points p, q ∈ P. Since
φ lies over the identity on B, it follows that p and q must lie in the same fiber
π−1(b) ⊂ P. Then there is a unique g = τ(p, q) such that p · g = q, and by the
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intertwining property φ(q) = φ(p · g) = φ(p) · g. By freeness, we must have g = e
and therefore p = q.

For surjectivity, let p′ ∈ P ′ and set b = π′(p′) ∈ B. Choose any p ∈ π−1(b) ⊂ P
and consider φ(p). This must lie in the same fiber as p′ and thus p′ = φ(p) · g for
some g, and it follows that φ(p · g) = p′.

To see that φ−1 is continuous, it suffices to consider local trivializations. Thus

suppose π−1(U) ∼= U × G and π′
−1

(U) ∼= U × G are local trivializations of P
and P ′ respectively, over the same set U ⊂ B (which may be arranged by taking
intersections if necessary). Then φ|U has the form

φ : (b, g) 7−→
(
b, φ′(b, g)

)
=
(
b, φ′(b, e)g

)
for some φ′ : U × G −→ G which satisfies φ′(b, gh) = φ′(b, g)h. Thus φ−1 has the
form

φ−1 : (b, g) 7−→
(
b, φ′(b, e)−1g

)
which is continuous since g 7−→ g−1 is a continuous map on a topological group. �

3.2. Sections and trivializations. Recall that a section of (π, P,B) over U ⊂ B
is a map s : U −→ P such that π ◦ s = Id : U −→ U, and that a trivialization over

U is a morphism h : π−1(U)
∼=−→ U ×G intertwining multiplication on the right by

G. In fact, in the category of principal bundles, these two notions are very closely
related:

Proposition 3.4. There is a bijective correspondence between sections s ∈ Γ(U,P )
of P over U and trivializations h : π−1(U) −→ U ×G.
Remark. Recall that the fibers of P are G-torsors — sets with a free transitive G
action (hence having elements in 1–1 correspondence with g ∈ G) but without a
preferred identity element. The basic idea here is that a section of P gives preferred
points in the fibers which we may then identify with e ∈ G.
Proof. Given s ∈ Γ(U,P ), we define a trivialization as follows. For each p ∈ π−1(U),
let b = π(p) ∈ U and g = τ(s(b), p) ∈ G. Then set

h : π−1(U) −→ U ×G : p 7−→ (b, g).

It is clear that this intertwines the G actions since τ(s(b), p · g′) = τ(s(b), p)g′, and
an inverse is given by (b, g) 7−→ s(b) · g.

Conversely, each trivialization h : π−1(U) −→ U×G canonically defines a section
by s(b) := h−1(b, e), for which the construction above reproduces h. �

Corollary 3.5. A principal bundle P is globally trivial if and only if it admits
global sections.

Observe that the combination of Corollary 3.5 with the frame bundle construc-
tion Proposition 3.8 gives an alternate proof of Proposition 2.7 regarding the triv-
iality of vector bundles.

Example 3.6. Consider the Z/2 = {±1} bundle over S1 defined by

P = [0, 1]× Z/2/ {(0,+1) = (1,−1)} .
Here Z/2 is given the discrete topology. As a space it is easy to verify that this is
the nontrivial double cover of S1 and so does not admit any global sections.

As an excercise, the reader should verify that the real line bundle associated to P
via the obvious multiplicative action Z/2 −→ GL(R) is in fact the Möbius bundle.
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3.3. Associated bundles. We now show how to associate a fiber bundle to a
principal bundle. Let (π, P,B) be a principal G-bundle, and ρ : G −→ Aut(F ) a
left action of G on a space F. Then the product P ×F has a canonical right action
by

G −→ Aut(P × F ) : (p, f) · g = (p · g, ρ(g−1)f).

(Recall that a left action may be turned into a right action by composing with the
inverse map, and vice versa.) We will often drop the ρ from the notation and write
the action on F by f 7−→ g−1 · f.

Proposition 3.7. The quotient of P × F by G defines a fiber bundle over B with
fiber space F by

P ×G F := (P × F )/G
πF−→ B, πF ([p, f ]) := π(p).

The bundle P ×G F is called the associated fiber bundle to P by ρ : G −→
Aut(F ). If P is trivial as a G-bundle, then P ×G F is a trivial fiber bundle for any
F.

Proof. To see that πF is well-defined, note that another representative (p′, f ′) in
the equivalence class of (p, f) is related by p′ = p · g, f ′ = g−1 · f for some g ∈ G,
but π(p · g) = π(p) is therefore independent of the choice of representative.

We claim that the fibers of P ×G F are homeomorphic to F. To see this, fix a
point b ∈ B and choose a point p0 ∈ π−1(b) in the fiber of P over b. We have a
continuous map

F −→ π−1F (b) : f 7−→ [p0, f ],

and this map has an inverse given by

π−1F (b) −→ F : [p, f ] 7−→ τ(p0, p) · f,
where τ(p0, p) ∈ G is the translation function (1) defined by p0 · τ(p0, p) = p ∈ P.
Indeed, the map

π−1(b)× F 3 (p, f) 7−→ τ(p0, p) · f ∈ F
is invariant with respect to the G action since

(p, f) · g = (p · g, g−1 · f) 7−→ τ(p0, p · g) · g−1 · f = τ(p0, p)gg
−1 · f = τ(p0, p) · f,

and hence descends to the quotient π−1(b)× F/G = π−1F (b).
To see the local triviality, it suffices to prove the second assertion — that triviality

of P implies triviality of P ×G F. Thus assume that P = B ×G. Then

(P × F )/G = (B ×G× F )/G = {[(b, g, f)]} / ∼
This is isomorphic to B × F via [(b, g, f)] 7−→ (b, g · f) with inverse map (b, f) 7−→
[(b, e, f)]. �

Thus from a principal G-bundle over B, we can obtain a fiber bundle with fiber
F , and whose fibers furthermore have structure group Aut(F ) = G (the most
important case of which is when F is a vector space and G acts linearly). The
converse is also true.

Proposition 3.8. Given any fiber bundle π : E −→ B with fiber F and structure
group Aut(F ), there exists a principal Aut(F )-bundle P such that E = P ×G F.

Remark. The principal bundle P constructed above is called the frame bundle of
E (at least in the context of vector bundles — the terminology may be somewhat
unorthodox in the setting of fiber bundles, but I think it suits!).
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Proof. SetG = Aut(F ). For b ∈ B, let Pb denote the set of ‘frames’: G-isomorphisms
φ : F −→ π−1(b), which is to say invertible maps F −→ π−1(b) which intertwine
the action of G1.

This has an action of G on the right, since for g ∈ G, φ ◦ g : F −→ π−1(b) is
another G-isomorphism, and this action is clearly free and also transitive, since any
two G-isomorphisms φ, φ′ : F −→ π−1(b) are related by g = φ−1◦φ′ ∈ G = Aut(F ).
We set

P =
⋃
b∈B

Pb

and πP : p ∈ Pb 7−→ b.
If E = B × F is trivial, then π−1(b) = {b} × F and canonically Pb ∼= G.

Thus in this case P =
⋃
b∈B {b} × G = B × G, and we topologize P by giving it

the appropriate product topology. In the general case we do the same over local
trivializations.

To see that P ×G F ∼= E, observe that points in P ×G F are equivalence classes
[b, φ, f ] where b ∈ B, φ : F −→ π−1(b) is a G isomorphism, and f ∈ F. We consider
the map

P ×G F 3 [b, φ, f ] 7−→ φ(f) ∈ E.
This is easily seen to be well-defined since [b, φ ◦ g, g−1 · f ] 7−→ φ(gg−1f) = φ(f),
and is fiberwise isomorphic since φ is an isomorphism. �

Example 3.9 (Associated vector bundles). If F = V is a vector space, and
G −→ GL(V ) is a linear action, then P ×G V is an associated vector bundle.
Conversely, each real (resp. complex) vector bundle (π,E,B) is associated to a
principal GL(n,R) (resp. GL(n,C)) principal bundle, or indeed to a principal O(n)
(resp. U(n)) bundle by choosing an inner product.

Example 3.10 (Associated principal bundles). Consider the action of G on itself
by left multiplication. This action does not preserve the group structure of G, but
it does commute with right multiplication, and hence preserves the structure of
G as a (right) G-torsor. Thus the associated bundle P ×G G is again a principal
G-bundle, with G action [p, g] · h = [p, gh].

In fact P ×G G ∼= P . An explicit isomorphism is given by

P ×G G 3 [p, g] 7−→ p · g ∈ P

This is well-defined since any other representative of [p, g] has the form (p·h, h−1 ·g)
and is mapped to p · hh−1g = pg. An inverse is given by p 7−→ [p, e].

More generally, if φ ∈ Aut(G) is an automorphism, we can consider the left
action g · h = φ(g)h, and the associated principal G bundle P ×G,φ G. In the case
that φ(g) = γgγ−1 is an inner automorphism, we again have P ×G,φG ∼= P. Indeed,
an isomorphism is given by

P ×G G 3 [p, g] 7−→ p · γg ∈ P.

Any other representative (p ·h, γ−1h−1γg) maps to p ·hγγ−1h−1γg = p · γg and an
inverse is given by p 7−→ [p · γ−1, e].

Think about why this construction of an isomorphism may fail if φ is not inner.

1For the case we are most interested in, F = Fn and G = GL(n,F), or possibly O(n) or U(n)
in the presence of an inner product.
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Finally and more generally, to any homomorphism φ : G −→ H, we consider
the left G action on H by g · h = φ(g)h and may form the associated principal H
bundle P ×G,φ H.

We now show how to relate sections of an associated bundle to equivariant func-
tions on P. If F has a left G action, we say a map f : P −→ F is equivariant if
f(p ·g) = g−1 ·f(p). We denote the set of all such equivariant maps by Map(P, F )G.

Proposition 3.11. Let (π, P,B) be a principal G-bundle, F a space with left G
action, and E = P ×G F the associated bundle. There is a bijective correspondence

Γ(U,E)↔ Map(π−1(U), F )G

Proof. Given an equivariant map s̃ : π−1(U) −→ F , we define a section s : U −→ E
by

s(b) := [p, s̃(p)], for some p ∈ π−1(b).

By the equivariance property [p · g, s̃(p · g)] = [p · g, g−1 · s̃(p)] = [p, s̃(p)], so this is
well-defined.

Conversely, given a section s : U −→ E, we define a map s̃ : π−1(U) −→ F by
s̃(p) = f where s(π(p)) = [p, f ]. It follows that s̃(p · g) = g−1 · f since s(π(p · g)) =
s(π(p)) = [p, f ] = [p · g, g−1f ]. It is clear that passing from s to s̃ and vice versa are
inverse operations. We leave to the reader the proof that continuity of s implies
continuity of s̃ and vice versa. �

This has the following implication for morphisms of principal bundles:

Proposition 3.12. Fix G and let (π, P,B) and (π′, Q,B′) be principal G-bundles
over B and B′, respectively. There is a bijective correspondence between morphisms
φ : (π, P,B) −→ (π′, Q,B′) and sections of the associated bundle P ×G Q :

MorG(P,Q)↔ Γ(B,P ×G Q).

Here we are regarding Q as a left G space with the action g · q := q · g−1.

Proof. Recall that a morphism φ : (π, P,B) −→ (π′, Q,B′) is specified uniquely as
a G-equivariant map φ : P −→ Q. From Proposition 3.11 it therefore follows that

MorG(P,Q) ≡ Map(P,Q)G ≡ Γ(B,P ×G Q).

�

3.4. Homotopy classification. In this section we will discuss the homotopy clas-
sification of principal bundles. We will see that pullbacks of principal bundles by
homotopic maps are isomorphic, and deduce the existence for each G of a universal
principal G-bundles from which all other G-bundles are obtained via pullback.

The following result is of central importance in the homotopy theory of bundles.

Proposition 3.13. If (π, P,B′) is a principal G-bundle and if f0 ∼ f1 : B −→ B′

are homotopic maps, then the bundles f∗0 (P ) and f∗1 (P ) over B are isomorphic.

Proof. Considering pullback by ft, where ft : B×I −→ B′ is the homotopy between
f0 and f1, it suffices to show that for any G-bundle (π,Q,B × I), the restrictions

Q0 := Q|B × 0 −→ B × 0 ∼= B and Q1 := Q|B × 1 −→ B × 1 ∼= B
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are isomorphic. To prove this it suffices to produce an isomorphism Q
∼=−→ Q0 × I

of G-bundles over B × I, since then restriction to B × 1 gives the isomorphism

Q|B × 1 ≡ Q1

∼=−→ (Q0 × I)|B × 1 ≡ Q0.
Thus assume given a principal G-bundle Q −→ B×I, let Q0 = Q|B×0 as above,

and we will proceed to show that Q and Q0×I are isomorphic. By Proposition 3.12,
it is enough to produce a morphism Q −→ Q0× I over the identity on B× I, since
this morphism will necessarily be an isomorphism by Proposition 3.3. In turn, this
is equivalent to finding a section of Q×G Q0 × I −→ B × I.

Now, Q ×G Q0 × I has a section over B × 0, since the bundles Q|B × 0 and
Q0 × I|B × 0 ≡ Q0 are isomorphic by definition.

An extension is given by the homotopy lifting property. Indeed, under the con-
dition of paracompactness, Q ×G Q0 × I −→ B × I is a fibration, and are trying
to find a lift of the identity map B × I −→ B × I to Q ×G Q0 × I given a map
B × 0 −→ Q×G Q0 × I as in the following diagram:

B × 0 Q×G Q0 × I

B × I B × I
Id

The existence of such a lift is precisely the homotopy lifting property. �

For any space B, let G(B) denote the set of isomorphism classes of principal
G-bundles over B. Observe that the assignment B 7−→ G(B) is actually a con-
travariant (set-valued) functor. Indeed, if f : A −→ B is a continuous map, then
f∗ : G(B) 3 P 7−→ f∗(P ) ∈ G(A) is a function from G(B) to G(A). We may inter-
pret Proposition 3.13 as saying that G actually descends to the homotopy category:

G : hTop −→ {principal G-bundles up to iso.}

where the morphisms in hTop are homotopy equivalence classes of continuous maps.
The next step is to show that this functor is representable.

In the remainder of the section we restrict ourselves to the category CW of CW
complexes. Since we will be constructing principal bundles via pullback with respect
to maps defined up to homotopy, the results extend immediately to the category of
spaces which are homotopy equivalent to a CW complex.

Definition 3.14. A principal G-bundle (π,EG,BG) is said to be universal if the
total space EG is (weakly) contractible.

The name is derived from the following universal property:

Theorem 3.15. Let (π,EG,BG) be a universal G-bundle. Then for any CW
complex B, the sets [B,BG] and G(B) are equivalent. In other words,

[−, BG] −→ G : [f ] 7−→ [f∗EG]

is an equivalence of contravariant functors hCW −→ Set. We say that BG is a
classifying space for principal G-bundles.

Before proving Theorem 3.15, we recall the following result from the theory of
CW complexes.
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Lemma 3.16. If (B,A) is a CW pair and F a space such that πk(F ) = 0 for each
k such that B \A has cells of dimension k+ 1, then every map f : A −→ F extends

to a map f̃ : B −→ F such that f̃ |A ≡ f.

Proof. By induction on k, we may assume that f has been extended to the k-
skeleton Bk of (B,A) (recall that we regard A as the -1 skeleton of B, giving the
base case for the induction). For each k + 1 cell ek+1 ⊂ B with attaching map
φ : ∂Ik+1 −→ Bk, the composition f ◦ φ : ∂Ik+1 −→ F is nullhomotopic by the
hypothesis on F , hence can be extended to Bk ∪φ ek+1. Extending f in this way
for each k + 1 cell completes the induction. �

Corollary 3.17. Let (B,A) be a CW pair and (π,E,B) a fiber bundle with fiber
F . If πk(F ) = 0 for all k such that B \A has cells of dimension k + 1, then every
section s ∈ Γ(A,E) can be extended to a global section s̃ :∈ Γ(B,E).

In particular, taking A = ∅, it follows that (π,E,B) admits global sections if F
is k-connected where k = dim(B).

Proof. Recall that if E = B × F is trivial, then a section is equivalent to a map
B −→ F, thus the claim follows directly from Lemma 3.16 in this case. The general
case follows by refining the CW structure on B and reducing to the trivial case.

Indeed, in the general case, we proceed as above by induction on k, assuming
that a section s has been extended to the k-skeleton, so s ∈ Γ(Bk, E). Now a general
k+ 1 cell ek+1 of B may not sit in a set over which E is trivial, but by subdividing
ek+1 ∼= Ik+1 into sufficiently small cubes, we may reduce to the case that ek+1 ⊂ Uα
where π−1(Uα) ∼= Uα × F and the inductive step follows as before. �

Proof of Theorem 3.15. To see surjectivity, suppose Q −→ B is a principal G-
bundle. The associated bundle Q ×G EG has a global section over B since EG
is contractible (by Corollary 3.17), which corresponds by Proposition 3.12 to a
morphism (π,Q,B) −→ (π,EG,BG) lying over some map f : B −→ BG of the
base spaces. Such a morphism is equivalent to a morphism Q −→ f∗(EG) over the
identiy map on B, which is therefore an isomorphism:

Q ∼= f∗(EG), f : B −→ BG.

To see injectivity, suppose that f0, f1 : B −→ BG are two maps such that the
pullbacks of EG are isomorphic:

φ : f∗0 (EG)
∼=−→ f∗1 (EG).

We claim that f0 ∼ f1. Indeed, consider the principal G-bundle

P := f∗0 (EG)× I −→ B × I.

It is immediate that P |B × 0 ∼= f∗0 (EG) and P |B × 1 ∼= f∗0 (EG). The G-bundle
morphism

P |B × 0 f∗0 (EG) EG

B × 0 BG

∼=

f0
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corresponds to a local section s0 ∈ Γ(B × 0, P ×G EG), and likewise the morphism

P |B × 1 f∗1 (EG) EG

B × 1 BG

φ

f1

corresponds to a local section s1 ∈ Γ(B × 1, P ×G EG). (Note that here we have
used the given isomorphism relating f∗0 (EG) = P |B × 1 and f∗1 (EG).)

Putting these together, we have the section s0∪s1 ∈ Γ(B×0∪B×1, P ×GEG).
By connectivity of EG, this extends to a global section s ∈ Γ(B × I, P ×G EG),
which therefore corresponds to a morphism (π, P,B × I) −→ (π,EG,BG) and
induces a map h : B × I −→ BG which is a homotopy between f0 = h|B × 0 and
f1 = h|B × 1. �

3.5. B as a functor. There is a general construction due to Milnor of a BG
associated to any topological group G. For the applications we are interested in, we
will require concrete realizations of BG, so we only sketch the proof here.

Theorem 3.18. Given a topological group G, there exists a universal principal
bundle (π,EG,BG).

Proof sketch. For each fixed n, form the n-fold join

EGn := G ∗G ∗ · · · ∗G.
Recall that the join of two spaces A and B is the space

A ∗B = A×B × I/ ∼
where we identify all points (a, b1, 0) ∼ (a, b2, 0) and (a1, b, 1) ∼ (a2, b, 1). The
resulting space can be viewed as a disjoint copy of A and B with a line segment
joining each point a ∈ A with each point b ∈ B.

It is possible to show that EGn is (n− 1)-connected, and it has an obvious free
action by G given by right multiplication in each factor of G. Thus the limit

EG := lim
n→∞

EGn

is a weakly contractible G-space, and BG := EG/G is therefore a classifying space.
�

Remark. A more proper description of this construction uses the machinery of
simplicial sets. The space EG is the geometric realization of a natural simplicial
set formed from G.

Corollary 3.19. BG can be taken to have a CW complex structure, and such a
BG is unique up to homotopy equivalence.

Proof. Let (π,EG′, BG′) be any universalG bundle (say the one constructed above),
and let φ : BG −→ BG′ be a CW approximation. The pullback bundle φ∗EG′ is
seen to be weakly contractible by considering the long exact homotopy sequences
of (π,EG′, BG′) and (pr1, φ

∗EG′, BG) and using the 5-lemma.
If B1G and B2G are two classifying spaces for G, we obtain homotopy classes

of maps f : B1G −→ B2G and g : B2G −→ B1G classifying E1G and E2G
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respectively. It then follows from the fact that (f◦g)∗E2G ∼= E2G and (g◦f)∗E1G ∼=
E1G that f ◦ g ' 1 and g ◦ f ' 1. �

In fact, B : Grp −→ hCW : G 7−→ BG is a functor:

Proposition 3.20. For each homomorphism φ ∈ Hom(G,H) there is natural ho-
motopy class Bφ ∈ [BG,BH] such that B(φ ◦ ψ) = Bφ ◦ Bψ and BId = Id.
Moreover, B preserves products in the sense that BG×BH is a B(G×H).

Proof. The associated bundle EG ×G,φ H (see Example 3.10) is a principal H-
bundle over BG hence classified by a map Bφ ∈ [BG,BH]. Functoriality follows
from the evident isomorphism

(EG×G,φ H)×H,ψ K ∼= EG×G,ψ◦φ K
and that BId = Id follows from the fact that EG ×G G ∼= EG, as proved in
Example 3.10.

For the product result, simply note that EG×EH is a weakly contractible space
with a G×H action with respect to which (EG× EH) /G×H = BG×BH. �

We next mention two important results concerning these induced maps which we
will use in computing the cohomology of the classifying spaces for O(n) and U(n).

Lemma 3.21. Let H ⊂ G be a subgroup such that G −→ G/H is a principal H
bundle. Then Bi : BH −→ BG can be taken to be a fiber bundle with fiber G/H.

Remark. The condition on H ⊂ G is satisfied in most situations of interest; in
particular, if G is a Lie group then any closed subgroup has this property. In this
case G/H is a so-called ‘homogeneous space’ (and is of course again a Lie group if
H is both closed and normal).

Proof. Under the condition on G and H, the space EG is a contractible space with
a free right H action, and so (EG)/H is a BH, with EH ≡ EG. It is easy to see
that (EG)/H ∼= (EG ×G G)/H ∼= EG ×G G/H, and we have the morphism of
principal bundles

EG EG

BH = EG/H BG = EG/G

≡

so that the induced classifying map BH −→ BG may be identified with the asso-
ciated bundle

BH = EG×G G/H −→ BG

which is a fiber bundle with fiber G/H. �

Lemma 3.22. For an inner automorphism φ : G −→ G, the induced map on
classifying spaces is homotopic to the identity. In other words,

Bφ = Id ∈ [BG,BG]

Proof. This follows from the isomorphism EG×G,φG ∼= EG constructed in Exam-
ple 3.10. �
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4. Characteristic classes

Definition 4.1. A characteristic class is a functor which assigns to each vector
bundle (π,E,B) a cohomology class c(E) ∈ H∗(B;G) for some group G. Here
functoriality means that for every map f : A −→ B, c(f∗E) = f∗c(E) ∈ H∗(A;G).

It follows from the functoriality that c(E) = 0 whenever E is a trivial bundle
over B, since E = B×Fn is isomorphic to the pullback f∗(Fn) of the trivial vector
bundle Fn −→ 0 by the unique map f : B −→ 0, regarding 0 as a one point space.
It also follows that if E1

∼= E2 as vector bundles over B, then c(E1) = c(E2). Thus
characteristic classes give necessary conditions for two bundles to be isomorphic, or
for a bundle to be trivial.

One way to produce characteristic classes is to compute cohomology classes of the
classifying spaces BGL(n,F), and in fact by the Yoneda lemma, all characteristic
classes arise in this way.

Thus it remains to compute the cohomology of BGL(n,R) and BGL(n,C) for
some groups G. Moreover, by choosing inner products, or by reduction of structure
group (to be written), it suffices to consider classifying spaces for the compact
groups O(n) and U(n).

4.1. Line Bundles. The case n = 1 is rather special as we shall see. To produce a
classifying space for O(1) = Z2, consider the quotient maps π : Sn −→ RPn. there
is a free transitive right action by Z2 on each fiber which interchanges antipodal
points and respects the inclusions

Sn Sn+1

RPn RPn+1

⊂

⊂

Thus each (π, Sn,RPn) is a principal Z2-bundle, as is the direct limit S∞ =
limn→∞ Sn −→ RP∞ = limn→∞ RPn. Since S∞ is weakly contractible (in fact
it is contractible as a CW complex), it follows that:

Proposition 4.2. The infinite projective space RP∞ is a BZ2, with EZ2 = S∞.

Similarly, by considering S2n+1 =
{
|z0|2 + · · ·+ |zn|2 = 1

}
⊂ Cn+1 and the

quotient by the S1 = U(1) action (z0, . . . , zn) · eiθ = (z0e
iθ, . . . , zne

iθ), it follows
that S2n+1 −→ CPn is a principal U(1)-bundle, and taking the direct limit we
obtain

Proposition 4.3. The infinite projective space CP∞ is a BU(1) with EU(1) = S∞.

Problem 1. Show that with respect to the standard action Z2 −→ GL(R) the
associated line bundle EZ2 ×Z2

R is none other than the canonical line bundle:

EZ2 ×Z2
R ∼= γ1∞ −→ RP∞.

Likewise, show that
EU(1)×U(1) C ∼= γ1∞ −→ CP∞.



BUNDLES, CLASSIFYING SPACES AND CHARACTERISTIC CLASSES 17

Definition 4.4. The generator w1 ∈ H1(RP∞;Z2) where H∗(RP∞,Z2) = Z2[w1]
is called the first Steifel-Whitney class. If (π,E,B) is a real line bundle with
classifying map f : B −→ RP∞, we say w1(E) := f∗w1 ∈ H1(B,Z2) is the first
Steifel-Whitney class of E.

Similarly, the generator c1 ∈ H2(CP∞;Z) where H∗(CP∞,Z) = Z[c1] is called
the first Chern class. If (π,E,B) is a complex line bundle with classifying map
f : B −→ CP∞, we say c1(E) := f∗c1 ∈ H2(B;Z) is the first Chern class of E.

The characteristic class of a line bundle E is, by definition determined by the
classifying map f : B −→ BZ2 or BU(1). However in this instance, the converse
is also true; namely, the characteristic class w1(E) or c1(E) also determines the
classifying map. Indeed, we have the rather remarkable fact that BZ2 = RP∞ is
also a K(Z2, 1) and BU(1) = CP∞ is also a K(Z, 2). This follows in turn from the
long exact homotopy sequences for the fibrations (π, S∞,RP∞) and (π, S∞,CP∞)
and the fact that Z2 is a K(Z2, 0) and S1 is a K(Z, 1).

Thus for instance, w1(E) ∈ H1(B,Z2) = [B,RP∞] is represented by a unique
homotopy class f ∈ [B,RP∞] such that f∗w1 = w1(E) which is therefore also the
classifying map for the bundle, and similarly in the complex case. We conclude
that line bundles are completely classified by cohomology:

Theorem 4.5 (Classification of line bundles). The association E 7−→ w1(E) gives a
bijection between isomorphism classes of real line bundles on B and H1(B,Z2). Sim-
ilarly, the association E 7−→ c1(E) gives a bijection between isomorphism classes
of complex line bundles on B and H2(B,Z).

Remark. Since H1(B,Z2) and H2(B,Z) are also abelian groups, you might ask
if there is an abelian group structure on isomorphism classes of real/complex line
bundles over B such that the above bijection is a group isomorphism. In fact there
is, and the group operation is given by the tensor product (E1, E2) 7−→ E1 ⊗E2 of
line bundles, with the trivial bundle as the identity element.

4.2. Grassmanians. To obtain characteristic classes for higher rank bundles, we
next identify nice realizations of BO(n) and BU(n) as Grassmannian manifolds.

Definition 4.6. Let Vn(Rn+k) denote the Steifel manifold of orthonormal n-

tuples (v1, . . . , vn), vi ∈ Rn+k, topologized as a subspace of
(
Rn+k

)n
. There is an

obvious free O(n)-action on Vn(Rn+k), and we let Gn(Rn+k) = Vn(Rn+k)/O(n)
be the Grassmannian manifold of n-dimensional subspaces of Rn+k, with the
quotient topology. The quotient is equivalent to the map sending (v1, . . . , vn) to
the n-plane they span. Note that the fiber of the quotient is Vn(Rn) which is an
O(n)-torsor.

We may similarly define the complex Steifel manifolds Vn(Cn+k), and the com-
plex Grassmanians Gn(Cn+k) = Vn(Cn+k)/U(n).

Taking the direct limit as k −→∞, we obtain the spaces Vn(R∞), Gn(R∞), and
Vn(C∞), Gn(C∞).

Proposition 4.7. The the projection Vn(R∞) −→ Gn(R∞) is a universal principal
O(n)-bundle, and Vn(C∞) −→ Gn(C∞) is a universal principal U(n)-bundle.

Proof. It remains to show that the quotient maps are fiber bundles, and that the
total spaces are contractible. For the first claim, for any V ∈ Gn(R∞), define the
open open neighborhood U(V ) to consist of all n-planes W for which the orthogonal
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projection ΠV : W −→ V is an isomorphism. On fibers in π−1(U(V )) ⊂ Vn(R∞),
the projection (v1, . . . , vn) 7−→ (ΠV v1, . . . ,ΠV vn) followed by Gram-Schmidt or-
thonormalization can be seen to be an O(n)-equivariant homeomorphism onto the
fiber over V, which can be further identified with O(n) by comparing with a fixed
orthonormal n-frame for V. Thus π−1(U(V )) ∼= U(V )×O(n).

To see that Vn(R∞) is contractible, we apply the (injective) linear homotopy
ht : R∞ −→ R∞ where ht(x1, x2, . . .) = (1 − t)(x1, x2, . . .) + t(0, x1, x2, . . .) to an
n-frame (v1, . . . , vn), re-orthogonalizing for each t by Gram-Schidt. This gives a
homotopy between (v1, . . . , vn) and an n-frame all of whose vectors have vanishing
x1 coordinate. Iterating this n times gives a homotopy to an n-frame (w1, . . . , wn)
all of whose vectors have their first n coordinates vanishing, which is then homotopic
by (1 − t)(w1, . . . , wn) + t(e1, . . . , en) to the n-frame given by the first n standard
basis vectors.

The proof in the complex case is entirely analogous. �

To compute the cohomology of Gn(R∞) and Gn(C∞), we will require the follow-
ing result regarding the cohomology of certain well-behaved fiber bundles. A nice
elementary proof can be found in [Hat02].

Theorem 4.8 (Leray-Hirsch). Let (π,E,B) be a fiber bundle with fiber F and let R
be a PID. If H∗(F ;R) is a finitely generated free R-module, and if there are classes
{c1, . . . , cN} ⊂ H∗(E;R) whose restrictions {i∗(c1, . . . , i∗(cN )}) ∈ H∗(F ;R) to
each fiber form a basis, then H∗(E;R) is a free H∗(B;R) module, with isomorphism

H∗(B;R)⊗R H∗(F ;R)
∼=−→ H∗(E;R)

given by
∑
bji
∗(cj) 7−→

∑
π∗(bj) cj .

Remark. With respect to π∗ : H∗(B;R) −→ H∗(E;R) and the cup product,
H∗(E;R) always has the structure of a H∗(B;R)-module; the theorem gives con-
ditions under which it is free. One can also intepret the result as saying that under
the hypotheses of the theorem, E behaves cohomologically like the product B×F ,
for which the theorem is a consequence of the Künneth and universal coefficient the-
orems. Recall that the isomorphism in the Leray-Hirsch theorem is not necessarily
a ring isomorphism.

The fiber bundle we will consider is Bi : BO(1)n −→ BO(n). Recall that we
may take BO(1)n = EO(n)/O(1)n as the classifying space of the subgroup, which
we explicitly identify as

Vn(R∞)/O(1)n = Fn(R∞),

the flag manifold of ordered n-tuples of orthogonal lines (L1, . . . , Ln), Li ⊂ R∞.
(Such ordered n-tuples are equivalent to so-called n-flags in R∞, which are sequences
{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn of subspaces with dim(Vi/Vi−1) = 1.) The resulting fiber
bundle

BO(1)n = Fn(R∞) −→ Gn(R∞) = BO(n)

sends (L1, . . . , Ln) to the space L1+ · · ·+Ln, and has fiber Fn(Rn), which of course
is the homogeneous space O(n)/O(1)n.

Theorem 4.9. The Z2 cohomology of BO(n) is a polynomial ring:

H∗(BO(n);Z2) = Z2[w1, . . . , wn], wi ∈ Hi(BO(n),Z2)

The generator wi ∈ Hi(BO(n),Z2) is known as the ith Steifel-Whitney class.
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Letting pn,k : O(n)×O(k) −→ O(n+k) denote the inclusion of the block diagonal
subgroup, the Steifel-Whitney classes satisfy

(2) Bp∗n,kwj =
∑

0≤i≤j

wi wj−i

where by convention w0 := 1, and the wi (resp. wj) are the corresponding generators
in the cohomology of BO(n) (resp. BO(k)) or 0 if i > n (resp. j > k).

Similarly, letting in : O(n) −→ O(n+ 1), the classes satisfy

(3) Bi∗nwj = wj .

Proof. Note that it follows from Proposition 3.20, that the n-fold product

RP∞ × · · ·RP∞ = BO(1)× · · ·BO(1)

is a BO(1)n, and from the Künneth theorem

H∗(BO(1)n;Z2) = Z2[x1, . . . , xn], xi ∈ H1(BO(1)n;Z2).

However, in order to apply Leray-Hirsch, we need to identify specific generators
and their relation to generators of the cohomology of the fiber.

For any n and k, the Z2 cohomology of Fk(Rn) may be computed by induction
using the fiber bundles

Fk(Rn) −→ Fk−1(Rn), (L1, . . . , Lk) 7−→ (L1, . . . , Lk−1).

with fiber RPn−k to obtain that H∗(Fk(Rn);Z2) is the quotient of the polyno-

mial ring Z2[x1, . . . , xk] by the monomials xn1 , x
n−1
2 , . . . , xn−k+1

k . Indeed, the classes
xαk ∈ Hα(Fk(Rn);Z2) obtained by pullback from the map Fk(Rn) −→ RPn−1,
(L1, . . . , Lk) 7−→ Lk restrict to generators of the cohomology H∗(RPn−k,Z2) of
the fiber, so the Leray-Hirsch theorem applies and by the inductive hypothesis

H∗(Fk(Rn);Z2) ∼= H∗(Fk−1(Rn);Z2)⊗Z2 Z2[xk]/xn−k+1
k .

Letting n → ∞ we again obtain the expected result that H∗(Fn(R∞);Z2) =
Z2[x1, . . . , xn].

Now it is clear that the generators xα1
1 , . . . , xαn

n ∈ H∗(Fn(R∞);Z2) restrict to
generators of the cohomology of the fiber Fn(Rn), so again the Leray-Hirsch theorem
applies, giving

(4) H∗(BO(1)n;Z2) = H∗(BO(n);Z2)⊗Z2
H∗(Fn(Rn);Z2).

in particular since 1 ∈ H∗(BO(1)n;Z2) is a generator, there is a canonical im-
age of H∗(BO(n);Z2) in H∗(BO(1)n;Z2) as a direct summand by the map π∗ :
H∗(BO(n);Z2) −→ H∗(BO(1)n;Z2).

It is easy to see that this image lies in the symmetric polynomials in Z2[x1, . . . , xn]
since the action of the symmetric group Σn by permutation of the Li on Fn(R∞)
permutes the variables xi, but descends to act trivially on Gn(R∞). (Alternatively,
the Σn action on O(1)n acts by inner automorphism in O(n) and therefore by
Lemma 3.22 induces the identity on BO(n).)

To see that the image of H∗(BO(n);Z2) is exactly the subring of symmetric
polynomials, it suffices to give a counting argument using Poincaré series. The
Poincaré series of Z2[x1] is p(t) = 1 + t + t2 + · · · = (1 − t)−1 and therefore by
multiplicativity

pBO(1)n(t) = (1− t)−n.
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The Poincaré series of the fiber space Fn(Rn) is

pFn(Rn)(t) = 1(1+t)(1+t+t2) · · · (1+t+· · ·+tn−1) =

n∏
i=1

(1− ti)
1− t

= (1−t)−n
∏
i

(1−ti)

and so (4) implies that

pBO(n)(t) =

n∏
i=1

(1− ti)−1

which is exactly the Poincaré series of Z2[σ1, . . . , σn] where σi is the ith elementary
symmetric polynomial of the xj :

σi =
∑

1≤j1<···<ji≤n

xj1 · · ·xji .

The multiplicativity property (2) follows from the corresponding property for
elementary symmetric polynomials and the fact that BO(1)n −→ BO(n+k) factors
through Bpn,k : BO(n)×O(k) −→ BO(n+ k).

Similarly, the naturality property (3) follows from the fact that the image of
the ith elementary symmetric polynomial σi(x1, . . . , xn+1) ∈ Z2[x1, . . . , xn+1] in
Z2[x1, . . . , xn] = Z2[x1, . . . , xn+1]/xn+1 is σi(x1, . . . , xn). �

By an essentially similar proof, replacing Z2 by Z and R by C we obtain

Theorem 4.10. The Z cohomology of BU(n) is a polynomial ring:

H∗(BU(n);Z) = Z[c1, . . . , cn], ci ∈ H2i(BU(n);Z)

The generator ci ∈ H2i(BU(n);Z) is known as the ith Chern class.
Letting pn,k : U(n)×U(k) −→ U(n+k) denote the inclusion of the block diagonal

subgroup, the Chern classes satisfy

(5) Bp∗n,kcj =
∑

0≤i≤j

ci cj−i

where by convention c0 := 1, and the ci (resp. cj) are the corresponding generators
in the cohomology of BU(n) (resp. BU(k)) or 0 if i > n (resp. j > k).

Similarly, letting in : U(n) −→ U(n+ 1), the classes satisfy

(6) Bi∗ncj = cj .

4.3. Steifel-Whitney Classes. Translating Theorem 4.9 to the language of vector
bundles, we obtain the following ‘axioms’ for Steifel-Whitney classes (which can be
shown to characterize the classes completely).

Theorem 4.11. For any real vector bundle (π,E,B), there exist classes wi(E) ∈
Hi(B,Z2), i ∈ N such that

(a) If (π′, f∗(E), A) is the pullback of E by f : A −→ B, then wi(f
∗(E)) =

f∗(wi(E)) ∈ Hi(A,Z2).
(b) wi(E) = 0 for i > rank(E).
(c) wi(E ⊕ F ) =

∑
j≤i wj(E)wi−j(F ).

(d) wi(E ⊕ R) = wi(E).
(e) w1(γ1) 6= 0 ∈ H1(RPn;Z2).
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In light of the multiplicativity property with respect to Whitney sums, we make
the following definition

Definition 4.12. For a real vector bundle (π,E,B), the total Whitney class is
the element

w(E) = 1 + w1(E) + w2(E) + · · · ∈ H∗(B,Z2).

This class has the followin multiplicativity property:

w(E ⊕ F ) = w(E)w(F ).

4.4. Chern Classes. Likewise, we have a similar axiomatic characterization of
Chern classes.

Theorem 4.13. For any complex vector bundle (π,E,B), there exist classes ci(E) ∈
H2i(B,Z), i ∈ N such that

(a) If (π′, f∗(E), A) is the pullback of E by f : A −→ B, then ci(f
∗(E)) =

f∗(ci(E)) ∈ H2i(A,Z).
(b) ci(E) = 0 for i > rankC(E).
(c) ci(E ⊕ F ) =

∑
j≤i cj(E) ci−j(F ).

(d) ci(E ⊕ C) = ci(E).
(e) c1(γ1) ∈ H2(CPn;Z) is a generator.

Definition 4.14. For a complex vector bundle (π,E,B), the total Chern class
is the element

c(E) = 1 + c1(E) + c2(E) + · · · ∈ H∗(B,Z).

This class has the followin multiplicativity property:

c(E ⊕ F ) = c(E) c(F ).
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