
JORDAN CANONICAL FORM

We will show that every complex n×n matrix A is linearly conjugate to a matrix
J = T−1AT which is in Jordan canonical form:

J =


J1

J2
. . .

Jk


where each Jordan block Jk is a matrix of the form

Jk =


λ 1

λ 1
. . .

. . .

λ 1
λ


with an eigenvalue λ of A along the diagonal.

Example 1. If a 3 × 3 matrix A has repeated eigenvalue λ = 5 with multiplicity
3, there are three possibilities for the Jordan canonical form of A:5 0 0

0 5 0
0 0 5

 ,

5 1 0
0 5 0
0 0 5

 , or

5 1 0
0 5 1
0 0 5

 .

The first consists of three 1×1 Jordan blocks, the second consists of a 2×2 Jordan
block and a 1× 1 block, and the third consists of a single 3× 3 Jordan block. You

might expect

5 0 0
0 5 1
0 0 5

 to be a fourth possibility, but this is conjugate to the

second matrix above.

Let us consider for a moment how a k × k Jordan block J acts with respect to
the standard basis vectors Ei ∈ Ck:

JE1 = λE1,

JE2 = λE2 + E1,

...
...

JEk = λEk + Ek−1.

Thus E1 is an eigenvector of Jk with eigenvalue λ, and we call {E2, . . . , Ek} gen-
eralized eigenvectors, since they are not true eigenvectors but have a similar
property. The whole set {E1, . . . , Ek} forms a generalized eigenvector chain of
length k, starting with a true eigenvector E1 and ending with Ek.
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Example 2. The matrix

A =


3 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 0 1
0 0 0 0 0 0


is in Jordan canonical form and consists of a 1×1 block with eigenvalue 3, one 2×2
block and one 1×1 block both with eigenvalue 2, and a 2×2 block with eigenvalue
0. The true eigenvectors are E1, E2, E4 and E5 (the latter spans the 1 dimensional
kernel of A), and the rest are generalized eigenvectors. The chains consist of

{E1} , {E2, E3} , {E4} , and {E5, E6} .

We recall a few important facts:

(1) The kernel of A is the subspace Ker(A) = {V ∈ Cn : AV = 0} and V ∈
Ker(A) is equivalent to saying that V is an eigenvector of A with eigenvalue
0

(2) For an n×n matrix, the dimension r = dim Ran(A) of the range space and
the dimension k = dim Ker(A) of the kernel satisfy

k + r = n.

(3) A is invertible if and only if Ker(A) = {0} , for then r = n and k = 0.

Theorem. Let A be an n × n complex matrix. Then there exists an invertible
matrix T such that

(1) T−1AT = J

where J is a Jordan form matrix having the eigenvalues of A. Equivalently, the
columns of T consist of a set of independent vectors V1, . . . , Vn such that

(2) AVj = λjVj , or AVj = λjVj + Vj−1.

Proof. This proof is due to Fillipov, and proceeds by induction on n. The case
n = 1 is trivial since a 1× 1 matrix is already in canonical form.

Thus suppose that the theorem has been proved for r× r matrices for all r < n,
and consider an n× n matrix A. We first suppose that A is not invertible, so that
in particular dim Ran(A) = r < n.

Step 1. Consider the restriction of A to the space Ran(A). This is given by
an r × r matrix (A must send Ran(A) into itself), so by the inductive hypothesis,
there exists a set of linearly independent vectors W1, . . . ,Wr for Ran(A) such that

AWj = λjWj , or AWj = λjWj +Wj−1.

Step 2. Let p be the dimension of the subspace consisting of the intersection
Ker(A) ∩ Ran(A). This means that there are p linearly independent vectors in
Ran(A) which are also in Ker(A), and so have eigenvalue 0. In particular, among
the generalized eigenvector chains of the Wi in the previous step, p of these must
have λ = 0 and start with some true eigenvector. Now consider the end of such a
chain, call it W . Since W ∈ Ran(A), there is some vector Y such that AY = W .



JORDAN CANONICAL FORM 3

We do this for each of the p chains and obtain vectors Y1, . . . , Yp. Note that each
of these vectors is the new end of the chain of Wis since the corresponding λ is 0.

Step 3. Now consider the subspace of Ker(A) spanned by nonzero vectors
which are not also in Ran(A). This space has dimension n − r − p, and we can
find independent vectors Z1, . . . , Zn−r−p spanning this space, which must satisfy
AZj = 0 since they are in the kernel of A.

Now we claim that the setW1, . . . ,Wr, Y1, . . . , Yp, Z1, . . . , Zn−r−p is independent.
Indeed, suppose that ∑

i

aiWi +
∑
j

bjYj +
∑
k

ckZk = 0.

Applying A to both sides, we find that

∑
i

ai

 λiWi

or
λiWi +Wi−1

+
∑
j

bjWij = 0.

None of the Wij s appearing in the second sum can appear in the first sum, since
they are the end of a chain for which λij = 0. Thus we conclude that all the bj
must be 0. So we now have ∑

i

aiWi +
∑
k

ckZk = 0.

But here the Wi are in the subspace Ran(A) and the Zk are explicitly not in the
space Ran(A), and since they are separately independent it follows that ai = ck = 0
for all i, k, so that the whole set is independent.

Now we rename the vectors W1, . . . ,Wr, Y1, . . . , Yp, Z1, . . . , Zn−r−p to V1, . . . , Vn,
reordering so that the vectors Yj come at the end of the corresponding chain of Wi’s,
where they belong. It follows that the set V1, . . . , Vn satisfies (2), and that (1) holds
where T is the matrix whose columns are the Vi.

To recap what we did: we started with the generalized eigenvector chains (the
vectors Wi) lying in the space Ran(A) which were afforded to us by induction. We
then appended a Yj to the end of each of those chains with eigenvalue 0, and then
added additional length 1 chains of the Zk with eigenvalue 0. In particular, note
that all the chains with nonzero eigenvalue are already obtained in Step 1, and that
we are always ‘growing’ or adding chains with eigenvalue 0.

If A is invertible, we consider instead A′ = (A−λ0I), where λ0 is any eigenvalue
of A. This must have nontrivial kernel (since there is at least one eigenvector for
λ0), so the previous algorithm applies to give a matrix T such that T−1A′T = J ′

is in canonical form. We claim that T also conjugates A to Jordan canonical form:

T−1AT = T−1
(
A′ + λ0I

)
T = T−1A′T + λ0I = J ′ + λ0I = J.

Notice that J is also a Jordan matrix, having the same eigenvector chains as J ′

but with shifted eigenvalues λ = λ′ + λ0. (In general A and A+ cI have the same
eigenvectors and generalized eigenvector chains, but their eigenvalues differ by c.)

The clever trick here is that the algorithm requires us to be able to identify a
particular eigenspace of A, namely the 0 eigenspace or kernel. If this space is trivial,
we shift some other eigenspace (for λ0 in this case) into this role by adding a constant
multiple of I, and the algorithm above works as before, obtaining eigenvector chains
and ‘growing’ those with eigenvalue λ0. �
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Corollary. Let A be a real n× n matrix. Then there exists an invertible matrix T
such that T−1AT = J has the form

J =


J1

J2
. . .

Jk


where each block Jk is has one of two forms:

Jk =


λj 1

λj 1
. . .

. . .

λj 1
λj

 , or


Bj I

Bj I
. . .

. . .

Bj I
Bj

 ,

where I =

(
1 0
0 1

)
and Bj =

(
αj βj
−βj αj

)
for real eigenvalues λj and complex

eigenvalues αj ± iβj of A.

Proof. Considering A as a complex matrix, we obtain complex generalized eigenvec-
tors V1, . . . , Vn from the previous theorem. If an eigenvector λ is real, then it follows
by considering the complex conjugate of the equations (2) that the corresponding
generalized eigenvectors can be taken to be real, replacing the Vj by 1

2

(
Vj + V j

)
if

necessary. This results in Jordan blocks of the first type.
If λ = α + iβ is complex, then λ = α − iβ must also be an eigenvector, and we

may assume that the chains for λ and λ consist of complex conjugate vectors Vj
and V j :

AVj = λVj
[

+ Vj−1
]
, AV j = λV j

[
+ V j−1].

Then, letting W2j−1 = Re (Vj) = 1
2

(
Vj + V j

)
and W2j = Im (Vj) = −i

2

(
Vj − V j

)
,

it follows that the Wj are independent and that

AW2j−1 = (αjW2j−1 − βjW2j)
[

+W2j−3
]

AW2j = (βjW2j−1 + αjW2j)
[

+W2j−2
]
.

Letting T be the matrix whose columns are the real-valued Vi of the first paragraph
and the Wj just constructed, we obtain the desired result. �

The Jordan canonical form of A is unique up to permutation of the Jordan
blocks. Indeed, the λj are the eigenvalues of A, counted with multiplicity, so it
suffices to show that two Jordan matrices with the same eigenvalues but different
size Jordan blocks (such as the 3× 3 matrices of Example 1) cannot be conjugate.
This is left as an exercise.


