JORDAN CANONICAL FORM

We will show that every complex $n \times n$ matrix A is linearly conjugate to a matrix $J=T^{-1} A T$ which is in Jordan canonical form:

$$
J=\left(\begin{array}{cccc}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right)
$$

where each Jordan block J_{k} is a matrix of the form

$$
J_{k}=\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda & 1 \\
& & & & \lambda
\end{array}\right)
$$

with an eigenvalue λ of A along the diagonal.
Example 1. If a 3×3 matrix A has repeated eigenvalue $\lambda=5$ with multiplicity 3 , there are three possibilities for the Jordan canonical form of A :

$$
\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right), \quad\left(\begin{array}{lll}
5 & 1 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{lll}
5 & 1 & 0 \\
0 & 5 & 1 \\
0 & 0 & 5
\end{array}\right) .
$$

The first consists of three 1×1 Jordan blocks, the second consists of a 2×2 Jordan block and a 1×1 block, and the third consists of a single 3×3 Jordan block. You might expect $\left(\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5\end{array}\right)$ to be a fourth possibility, but this is conjugate to the second matrix above.

Let us consider for a moment how a $k \times k$ Jordan block J acts with respect to the standard basis vectors $E_{i} \in \mathbb{C}^{k}$:

$$
\begin{aligned}
J E_{1} & =\lambda E_{1} \\
J E_{2} & =\lambda E_{2}+E_{1}, \\
\vdots & \vdots \\
J E_{k} & =\lambda E_{k}+E_{k-1} .
\end{aligned}
$$

Thus E_{1} is an eigenvector of J_{k} with eigenvalue λ, and we call $\left\{E_{2}, \ldots, E_{k}\right\}$ generalized eigenvectors, since they are not true eigenvectors but have a similar property. The whole set $\left\{E_{1}, \ldots, E_{k}\right\}$ forms a generalized eigenvector chain of length k, starting with a true eigenvector E_{1} and ending with E_{k}.

Example 2. The matrix

$$
A=\left(\begin{array}{llllll}
3 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

is in Jordan canonical form and consists of a 1×1 block with eigenvalue 3 , one 2×2 block and one 1×1 block both with eigenvalue 2 , and a 2×2 block with eigenvalue 0 . The true eigenvectors are E_{1}, E_{2}, E_{4} and E_{5} (the latter spans the 1 dimensional kernel of A), and the rest are generalized eigenvectors. The chains consist of

$$
\left\{E_{1}\right\},\left\{E_{2}, E_{3}\right\},\left\{E_{4}\right\}, \text { and }\left\{E_{5}, E_{6}\right\}
$$

We recall a few important facts:
(1) The kernel of A is the subspace $\operatorname{Ker}(A)=\left\{V \in \mathbb{C}^{n}: A V=0\right\}$ and $V \in$ $\operatorname{Ker}(A)$ is equivalent to saying that V is an eigenvector of A with eigenvalue 0
(2) For an $n \times n$ matrix, the dimension $r=\operatorname{dim} \operatorname{Ran}(A)$ of the range space and the dimension $k=\operatorname{dim} \operatorname{Ker}(A)$ of the kernel satisfy

$$
k+r=n .
$$

(3) A is invertible if and only if $\operatorname{Ker}(A)=\{0\}$, for then $r=n$ and $k=0$.

Theorem. Let A be an $n \times n$ complex matrix. Then there exists an invertible matrix T such that

$$
\begin{equation*}
T^{-1} A T=J \tag{1}
\end{equation*}
$$

where J is a Jordan form matrix having the eigenvalues of A. Equivalently, the columns of T consist of a set of independent vectors V_{1}, \ldots, V_{n} such that

$$
\begin{equation*}
A V_{j}=\lambda_{j} V_{j}, \quad \text { or } \quad A V_{j}=\lambda_{j} V_{j}+V_{j-1} \tag{2}
\end{equation*}
$$

Proof. This proof is due to Fillipov, and proceeds by induction on n. The case $n=1$ is trivial since a 1×1 matrix is already in canonical form.

Thus suppose that the theorem has been proved for $r \times r$ matrices for all $r<n$, and consider an $n \times n$ matrix A. We first suppose that A is not invertible, so that in particular $\operatorname{dim} \operatorname{Ran}(A)=r<n$.

Step 1. Consider the restriction of A to the space $\operatorname{Ran}(A)$. This is given by an $r \times r$ matrix (A must send $\operatorname{Ran}(A)$ into itself), so by the inductive hypothesis, there exists a set of linearly independent vectors W_{1}, \ldots, W_{r} for $\operatorname{Ran}(A)$ such that

$$
A W_{j}=\lambda_{j} W_{j}, \quad \text { or } \quad A W_{j}=\lambda_{j} W_{j}+W_{j-1}
$$

Step 2. Let p be the dimension of the subspace consisting of the intersection $\operatorname{Ker}(A) \cap \operatorname{Ran}(A)$. This means that there are p linearly independent vectors in $\operatorname{Ran}(A)$ which are also in $\operatorname{Ker}(A)$, and so have eigenvalue 0 . In particular, among the generalized eigenvector chains of the W_{i} in the previous step, p of these must have $\lambda=0$ and start with some true eigenvector. Now consider the end of such a chain, call it W. Since $W \in \operatorname{Ran}(A)$, there is some vector Y such that $A Y=W$.

We do this for each of the p chains and obtain vectors Y_{1}, \ldots, Y_{p}. Note that each of these vectors is the new end of the chain of $W_{i} \mathrm{~s}$ since the corresponding λ is 0 .

Step 3. Now consider the subspace of $\operatorname{Ker}(A)$ spanned by nonzero vectors which are not also in $\operatorname{Ran}(A)$. This space has dimension $n-r-p$, and we can find independent vectors Z_{1}, \ldots, Z_{n-r-p} spanning this space, which must satisfy $A Z_{j}=0$ since they are in the kernel of A.

Now we claim that the set $W_{1}, \ldots, W_{r}, Y_{1}, \ldots, Y_{p}, Z_{1}, \ldots, Z_{n-r-p}$ is independent. Indeed, suppose that

$$
\sum_{i} a_{i} W_{i}+\sum_{j} b_{j} Y_{j}+\sum_{k} c_{k} Z_{k}=0 .
$$

Applying A to both sides, we find that

$$
\sum_{i} a_{i}\left[\begin{array}{c}
\lambda_{i} W_{i} \\
\text { or } \\
\lambda_{i} W_{i}+W_{i-1}
\end{array}\right]+\sum_{j} b_{j} W_{i_{j}}=0
$$

None of the $W_{i_{j}}$ s appearing in the second sum can appear in the first sum, since they are the end of a chain for which $\lambda_{i_{j}}=0$. Thus we conclude that all the b_{j} must be 0 . So we now have

$$
\sum_{i} a_{i} W_{i}+\sum_{k} c_{k} Z_{k}=0
$$

But here the W_{i} are in the subspace $\operatorname{Ran}(A)$ and the Z_{k} are explicitly not in the space $\operatorname{Ran}(A)$, and since they are separately independent it follows that $a_{i}=c_{k}=0$ for all i, k, so that the whole set is independent.

Now we rename the vectors $W_{1}, \ldots, W_{r}, Y_{1}, \ldots, Y_{p}, Z_{1}, \ldots, Z_{n-r-p}$ to V_{1}, \ldots, V_{n}, reordering so that the vectors Y_{j} come at the end of the corresponding chain of W_{i} 's, where they belong. It follows that the set V_{1}, \ldots, V_{n} satisfies (2), and that (1) holds where T is the matrix whose columns are the V_{i}.

To recap what we did: we started with the generalized eigenvector chains (the vectors W_{i}) lying in the space $\operatorname{Ran}(A)$ which were afforded to us by induction. We then appended a Y_{j} to the end of each of those chains with eigenvalue 0 , and then added additional length 1 chains of the Z_{k} with eigenvalue 0 . In particular, note that all the chains with nonzero eigenvalue are already obtained in Step 1, and that we are always 'growing' or adding chains with eigenvalue 0.

If A is invertible, we consider instead $A^{\prime}=\left(A-\lambda_{0} I\right)$, where λ_{0} is any eigenvalue of A. This must have nontrivial kernel (since there is at least one eigenvector for λ_{0}), so the previous algorithm applies to give a matrix T such that $T^{-1} A^{\prime} T=J^{\prime}$ is in canonical form. We claim that T also conjugates A to Jordan canonical form:

$$
T^{-1} A T=T^{-1}\left(A^{\prime}+\lambda_{0} I\right) T=T^{-1} A^{\prime} T+\lambda_{0} I=J^{\prime}+\lambda_{0} I=J
$$

Notice that J is also a Jordan matrix, having the same eigenvector chains as J^{\prime} but with shifted eigenvalues $\lambda=\lambda^{\prime}+\lambda_{0}$. (In general A and $A+c I$ have the same eigenvectors and generalized eigenvector chains, but their eigenvalues differ by c.)

The clever trick here is that the algorithm requires us to be able to identify a particular eigenspace of A, namely the 0 eigenspace or kernel. If this space is trivial, we shift some other eigenspace (for λ_{0} in this case) into this role by adding a constant multiple of I, and the algorithm above works as before, obtaining eigenvector chains and 'growing' those with eigenvalue λ_{0}.

Corollary. Let A be a real $n \times n$ matrix. Then there exists an invertible matrix T such that $T^{-1} A T=J$ has the form

$$
J=\left(\begin{array}{cccc}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{k}
\end{array}\right)
$$

where each block J_{k} is has one of two forms:

$$
J_{k}=\left(\begin{array}{ccccc}
\lambda_{j} & 1 & & & \\
& \lambda_{j} & 1 & & \\
& & \ddots & \ddots & \\
& & & \lambda_{j} & 1 \\
& & & & \lambda_{j}
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{ccccc}
B_{j} & I & & & \\
& B_{j} & I & & \\
& & \ddots & \ddots & \\
& & & B_{j} & I \\
& & & & B_{j}
\end{array}\right)
$$

where $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $B_{j}=\left(\begin{array}{cc}\alpha_{j} & \beta_{j} \\ -\beta_{j} & \alpha_{j}\end{array}\right)$ for real eigenvalues λ_{j} and complex eigenvalues $\alpha_{j} \pm i \beta_{j}$ of A.

Proof. Considering A as a complex matrix, we obtain complex generalized eigenvectors V_{1}, \ldots, V_{n} from the previous theorem. If an eigenvector λ is real, then it follows by considering the complex conjugate of the equations (2) that the corresponding generalized eigenvectors can be taken to be real, replacing the V_{j} by $\frac{1}{2}\left(V_{j}+\bar{V}_{j}\right)$ if necessary. This results in Jordan blocks of the first type.

If $\lambda=\alpha+i \beta$ is complex, then $\bar{\lambda}=\alpha-i \beta$ must also be an eigenvector, and we may assume that the chains for λ and $\bar{\lambda}$ consist of complex conjugate vectors V_{j} and \bar{V}_{j} :

$$
A V_{j}=\lambda V_{j}\left[+V_{j-1}\right], \quad A \bar{V}_{j}=\bar{\lambda} \bar{V}_{j}\left[+\bar{V}_{j-1}\right]
$$

Then, letting $W_{2 j-1}=\operatorname{Re}\left(V_{j}\right)=\frac{1}{2}\left(V_{j}+\bar{V}_{j}\right)$ and $W_{2 j}=\operatorname{Im}\left(V_{j}\right)=\frac{-i}{2}\left(V_{j}-\bar{V}_{j}\right)$, it follows that the W_{j} are independent and that

$$
\begin{aligned}
A W_{2 j-1} & =\left(\alpha_{j} W_{2 j-1}-\beta_{j} W_{2 j}\right) \quad\left[+W_{2 j-3}\right] \\
A W_{2 j} & =\left(\beta_{j} W_{2 j-1}+\alpha_{j} W_{2 j}\right)\left[+W_{2 j-2}\right]
\end{aligned}
$$

Letting T be the matrix whose columns are the real-valued V_{i} of the first paragraph and the W_{j} just constructed, we obtain the desired result.

The Jordan canonical form of A is unique up to permutation of the Jordan blocks. Indeed, the λ_{j} are the eigenvalues of A, counted with multiplicity, so it suffices to show that two Jordan matrices with the same eigenvalues but different size Jordan blocks (such as the 3×3 matrices of Example 1) cannot be conjugate. This is left as an exercise.

