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1 Definitions & Terminology

1.1 Single Equations

A general differential equation looks like

F
(
t, x(t), x′(t), . . . , x(n)(t)

)
= 0

The order of the equation is the highest order derivative of x(t) which occurs in the equation. In the above,
the order is n.

A linear equation is one which looks like

a0(t)x(n)(t) + a1(t)x(n−1)(t) + · · ·+ a0(t)x(t) = f(t)

The ai(t) are the called the coefficients. We say the equation is constant coefficient if ai(t) = ai =
constant for all i. If f(t) = 0, then the equation is homogeneous. For constant coefficient linear equations,
we sometimes use the operator notation

p(D)x(t) = (a0D
n + · · ·+ a0)x(t) = a0x

(n)(t) + · · ·+ a0x(t) = f(t)

where p(D) is the operator.
For a linear equation

p(D)x(t) = f(t)

we often refer to f(t) as the input, and the to solution x(t) as the response.
An important property of linear equations is that solutions to different inputs add. That is,

p(D)x1 = f1(t)
p(D)x2 = f2(t)

}
=⇒ p(D)(ax1(t) + bx2(t)) = af1(t) + bf2(t)

The solution to an nth order equation will have a general solution with n parameters. If the equation
is linear, the general solution looks like

x(t) = xh(t) + xp(t) = c1x1(t) + · · ·+ cnxn(t)︸ ︷︷ ︸
xh(t)

+xp(t)

where the ci are the parameters. The factors x1(t), . . . xn(t) are independent solutions to the associated
homogeneous equation which is when we set f(t) = 0.

We call xh(t) = c1x1(t) + · · ·+ cnxn(t) the homogeneous solution and xp(t) a particular solution1

1Note that is is not quite correct to say ”the particular solution” since particular solutions are not unique. xp(t) can be any
solution to the equation. Any two particular solutions will differ by an element of the homogeneous solution. However, most of
the techniques we use for finding an xp(t) do give us a preferred one, so there’s not too much harm in thinking of the xp(t) we
get as ”the” particular solution.
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1.2 Systems of Equations

A system of differential equations looks like

x′1 = f1(t, x1, . . . , xn)
x′2 = f2(t, x1, . . . , xn)

· · ·
x′n = fn(t, x1, . . . , xn)

which can be expressed in vector notation

x′ = f(t,x), x =


x1

x2

...
xn


A linear system is one which can be written

x′1 = a11(t)x1(t) + a12(t)x2(t) + · · ·+ a1n(t)xn(t) + f1(t)
x′2 = a21(t)x1(t) + a22(t)x2(t) + · · ·+ a2n(t)xn(t) + f2(t)

· · ·
x′n = an1(t)x1(t) + an2(t)x2(t) + · · ·+ ann(t)xn(t) + fn(t)

which can be expressed using matrix notation

x′ = A(t)x(t) + f(t), A(t) =


a11 a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

...
...

an1(t) an2(t) · · · ann(t)

 , f =


f1(t)
f2(t)

...
fn(t)


If f(t) = 0, the system is homogeneous. As in the case of single linear equations, the general solution

to a linear system has the form

x(t) = xh(t) + xp(t) = c1x1(t) + · · ·+ cnxn(t)︸ ︷︷ ︸
xh(t)

+xp(t)

where xh(t) is the associted homogeneous solution (where we set f = 0), and xp(t) is any particular
solution. The general homogeneous solution xh consists of an arbitrary linear combination of n independent
solutions x1(t), . . . ,xn(t).

1.3 Initial Value Problems

As we know, an nth order equation (or first order system of n equations) has a general solution depending on
n parameters. To fix these parameters uniquely, we often require the solution to satisfy an initial condition.
A differential equation together with an initial condition is known as an initial value problem.

For an nth order (linear) equation, a typical initial value problem looks like

a0x
(n)(t) + a1x

(n−1)(t) + · · ·+ a0x(t) = f(t), x(t0) = v1, x
′(t0) = v2, . . . , x

(n−1)(t0) = vn

where the vi are some specified constants. Note that for an nth order equation, we need to specify n
conditions (on x and its first n− 1 derivatives) at t = t0 to get a unique solution. In many cases, t0 = 0.

For a first order system of n equations, a typical initial value problem looks like

x′ = Ax + f , x(t0) = x0

where x0 is a specified constant vector.
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2 First Order Equations

2.1 Separable Equations

A differential equation
x′ = f(t, x)

is separable if
f(t, x) = g(t)h(x)

We can solve it by collecting everything involving x on the left and t on the right, to get

x′

h(x)
=

1
h(x)

dx

dt
= g(t)

Now we can integrate both sides ∫
1

h(x)
dx

dt
dt =

∫
dx

h(x)
=
∫
g(t) dt

and solve the result for x. The constant of integration serves as the free parameter in the general solution
for x.

Example. Solve 2x′ = t2(1− x2) for x(t) (i.e. find the general solution).

Solution. Write
2x′

1− x2
= t2

and integrate. Use partial fraction decomposition to write

2
1− x2

=
A

1− x
+

B

1 + x
=
A(1− x) +B(1 + x)

1− x2

and so
A+B = 2
B −A = 0

}
=⇒ B = A = 1

We get ∫
dx

1 + x
+
∫

dx

1− x
=

∫
t2 dt

ln(1 + x)− ln(1− x) = ln
(

1 + x

1− x

)
=

t3

3
+ c(

1 + x

1− x

)
= ket

3/3

x =
ket

3/3 − 1
ket3/3 + 1

2.2 Linear Equations

A first order linear equation has the general form

x′ + p(t)x = q(t)
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We can solve any linear equation (even with variable coefficients) by the method of integrating factors.
We multiply the equation on both sides by a function u(t)

u(t)x′ + u(t)p(t)x = u(t)q(t)

and we want to write the left hand side as

u(t)x′ + u(t)p(t)x = (u(t)x)′ = u(t)x′ + u′(t)x

which will be true if u′ = u(t)p(t). Thus we take u(t) = exp
(∫
p(t) dt

)
. Then the equation

(u(t)x)′ =
(
e

R
p(t) dtx

)′
= e

R
p(t) dtq(t)

is separable and can be integrated. The constant of integration serves as the parameter for the general
solution.

Example. Find the solution to x′ + 2x = t, where x(0) = 0.

Solution. The integrating factor u(t) above must satisfy

u′

u(t)
= 2 =⇒ u(t) = e2t

Thus the equation can be written (
e2tx

)′
= te2t

We integrate, using integration by parts∫
d

dt

(
e2tx

)
dt =

∫
te2t dt

= t
e2t

2
−
∫
e2t

2
dt

=
1
2

(
te2t − e2t

2

)
+ c

So

e2tx(t) =
1
2

(
te2t − e2t

2

)
+ c =⇒ x(t) =

t

2
− 1

4
+ ce−2t

is the general solution. To satisfy the initial condition, set

x(0) = −1
4

+ c =⇒ c =
1
4

so the solution to the initial value problem is

x(t) =
t

2
− 1

4
+
e−2t

4

When dealing with sines and cosines, it is usually easiest to complexify the problem as illustrated in the
following example.

Example. What is the response of x′ + kx = q(t) to the input q(t) = k sinωt? (Assume k > 0, so the
system is stable; we’re only interested in the steady state, so assume a convenient value for x(0).) Express
your answer in the form

x(t) = A sin (ωt− φ)

A is is the amplitude response, and φ is the phase shift.
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Solution. It is convenient to consider this as “half” of the complex problem (see appendix A for complex
variables techniques)

x̃′ + kx̃ = keiωt = k cosωt+ ik sinωt

where we are interested in the imaginary part of the solution x = Im(x̃). We solve according to the methods
described above, taking the arbitrary constant to be 0 for simplicity (as noted, we are interested in the form
of the steady state response, so the value of x̃(0) is unimportant).(

ektx̃
)′

= kekteiωt = ke(k+iω)t

ektx̃ =
ke(k+iω)t

(k + iω)
+ c

x̃ =
keiωt

k + iω
=

eiωt

1 + iω/k

There are a few methods to find the imaginary part of the right hand side. However, because we want to
write our solution in the specified form, it is best to do the following. Write 1 + iω/k in polar form,

1 + iω/k =
√

1 + ω2/k2ei tan
−1(ω/k)

Then
eiωt

1 + iω/k
= (1 + ω2/k2)−1/2ei(ωt−φ)

where φ = tan−1 ω/k. Then the imaginary part (and therefore the solution we seek) is

y = Im(ỹ) = (1 + ω2/k2)−1/2 sin (ωt− φ) , φ = tan−1 ω/k

We obtain A = (1 + ω2/k2)−1/2 for the amplitude response, and φ = tan−1 ω/k for the phase shift.
We note in passing that repeating the same calculation for q(t) = cosωt would be identical, but for taking

the real part at the end instead of the imaginary part, which gives a similar answer with sin replaced by
cos.

Often a nonlinear first order equation can be transformed into one which is either linear or separable
by an appropriate change of variables. The appropriate choice of variables depends on the equation and
will be specified in a given problem. Note: When applying a change of variables, you must be careful to
transform derivatives correctly. Use the chain rule to get a formula for derivatives of the old variable in
terms of the new.

Example. Find the general solution to xy2y′ = x3 +y3, by using the change of variables y(x) 7→ z(x) = y/x.

Solution. First we divide both sides of the equation by xy2 to get

y′ =
x3 + y3

xy2

Then we notice that if we divide the top and bottom of the right hand side by y3 we get

y′ =
x3

y3 + 1
x
y

=
x2

y2
+
y

x

Taking z = y/x as suggested, we see that the right hand side can be written as F (z) = z−2 + z. To write
the left hand side in terms of the new variable, we have to use the chain rule:

y′ = (xz(x))′ = xz′ + z
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Plugging in, we get an equation which is separable in z and x:

xz′ = z−2 + z − z = z−2

Separate as

z2z′ =
1
x∫

z2 dz =
∫
dx

x

z3

3
= ln(x) + c = ln(x) + ln(c′) = ln(c′x)

z =
(
ln
[
(c′x)3

])1/3
Now remember to substitute back y = xz, so that our (general) solution is

y = x
(
ln
[
(c′x)3

])1/3

2.3 Graphical Methods

2.3.1 Isoclines

We can obtain a graphical picture of the solutions to a first order equation

x′ = f(x, t)

by drawing isoclines. A solution to the above equation will be a curve x(t) in the x-t plane, and note that
the equation says that the slope of such a curve at a point (t0, x0) must be equal to f(x0, t0). So the method
of isoclines works as follows

1. For various choices of c, plot the level curves defined by

f(x, t) = c

these are the isoclines. By the above discussion, any solution curve touching the curve f(x, t) = c
must have slope equal to c there. So we draw little hashes with slope equal to c along the corresponding
isocline.

2. Sketch solution curves in the plane by demanding that their slope at each isocline match the slope of
the hashes on that isocline. Note that solutions cannot cross one another.

3. In particular, if an isocline has hashes which are tangent to the isocline itself, then that isocline is also
a solution curve, and no other solution may cross it.

Example. Draw isoclines with slope 0, 1, -1, 2 and -2, and sketch some solution curves for the equation

x′ = −2xt

Solution. The plot appears in figure 1. The 0 isocline corresponds to

xt = 0

whose solutions are the both the x and t axis. In particular the t axis itself is a solution x = 0. The other
curves are hyperbolas.
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Figure 1: Isoclines

Note that solutions appear to be gaussians, which can be verified by solving this (separable!) equation
exactly: ∫

dx

x
=

∫
−2t dt

lnx = −t2 + c

x = c′e−t
2

2.3.2 Phase Portraits

If we have an autonomous equation, i.e.
x′ = f(x)

where the right hand side doesn’t depend on t, we use a slightly different method, known as a phase
portrait. The isocline picture for an autonomous equation is somewhat redundant, since all of the isoclines
are horizontal (constant in t)! So we can “collapse” the picture to be a one dimensional picture consisting
of the x-axis only (not the t-axis!). We proceed as follows

1. Plot the critical points
x0 such that f(x0) = 0

These correspond to constant solutions x(t) = x0.

2. In between the critical points, we draw arrows going to the left or right according to whether2

f(x) > 0 ⇐⇒ x(t) increasing ⇐⇒ arrow right
f(x) < 0 ⇐⇒ x(t) decreasing ⇐⇒ arrow left

2It is useful to plot f(x) on a vertical axis over the x-axis to make it obvious where the critical points are and where f is
positive/negative.
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Figure 2: Phase diagram & stability (Note y should be x)

This characterizes the behavior of the solutions. If they start in between critical points, they will procede
left or right according to the arrows, and asymptotically approach either the next critical point, or ±∞ as
t→∞.

We classify critical points as

• stable if solutions approach the critical point from either side

• unstable if solutions depart from the critical point on either side

• semistable if solutions approach from one direction and depart on another

Example. For what values of a does x′ = ax− x2 − 2 have a stable, positive solution?

Solution. Complete the square on the right hand side to get

ax− x2 − 2 = −
(
x− a

2

)2

+
a2

4
− 2

If a is large enough, there are two critical points on the x-axis, corresponding to the points where the graph
of f(x) crosses it (since by definition, this is where f(x) = 0). From the plot (2), it is clear that unless
a2/4 > 2, the parabola will lie completely below the x axis and there will be no fixed points at all.

The lower root is an unstable fixed point, and the upper one is stable. We therefore need a condition on
a for which the larger root exists and is positive. The solutions to −(x− a

2 )2 + a2

4 − 2 = 0 are

x =
a

2
±
√
a2

4
− 2

and we are interested in the larger root x = a
2 +

√
a2

4 − 2. Thus the requirements on a that this exist (i.e.
not be complex) and be positive are

a

2
+

√
a2

4
− 2 > 0

a2

4
> 2
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2.4 Numerical Methods

The basic numerical method for differential equations is Euler’s method. Although much more sophisti-
cated methods are used in practice, this is the simplest and the one we require students to know for this
class. The idea is as follows. Suppose we have the initial value problem

x′ = f(x, t), x(t0) = x0

and we want to approximate the value of the solution x(t) at a point tn.

1. Divide the interval [t0, tn] into n even subintervals of width h called the step size, to get

t0 < t1 < · · · < tn, ti − ti−1 = h

2. Start with the initial point x0 = x(t0). We approximate the equation by

(x1 − x0)/h ≈ f(x0, t0)

so we iteratively solve for
xi = xi−1 + f(xi−1, ti−1)h

3. Stop when you get to xn

Euler’s method will tend to underestimate solutions when they are upward sloping, and overestimate
when the solutions are downward sloping.

Example. Estimate x(2), where x(t) is the solution to

x′ = xt, x(0) = 1

using a step size of h = 0.5.

Solution. It is best to make a table as follows

n tn xn f(xn, tn) hf(xn, tn)
0 0 1 0 0
1 1/2 1 = 1 + 0 1/2 1/4
2 1 5/4 = 1 + 1/4 5/4 5/8
3 3/2 15/8 = 5/4 + 5/8 45/16 45/32
4 2 105/32 = 15/8 + 45/32

so we compute x(2) ≈ 105/32 = 3.2812. This is likely to be an underestimate since the solution is increasing
exponentially. Indeed, the exact solution is

x(t) = et
2/2 =⇒ x(2) = e2 = 7.4

3 Higher Order Linear Equations

This section will review the methods for solving higher order constant coefficient linear equations. See section
1 for definitions and terminology.

To solve an nth order constant coefficient linear initial value problem

p(D)x = x(n) + a1x
(n−1) + · · ·+ a0x = f(t), x(0) = v1, x

′(0) = v2, . . . , x
(n−1)(0) = vn

the steps are as follows.
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1. Solve the associated homogeneous problem p(D)x = 0. There will be n linearly independent solutions
x1(t), . . . xn(t), and the homogeneous solution is given by xh(t) = c1x1(t)+c2x2(t)+ · · ·+cnxn(t). The
solutions are determined by the characteristic roots of the operator as described below in section 3.1.

2. Find a particular solution xp(t) to p(D)x = f(t), by using one of the methods in section 3.2, such as
undetermined coefficients or Fourier series.

3. The general solution is given by

x(t) = xh(t) + xp(t) = c1x1(t) + · · ·+ cnxn(t) + xp(t)

where the two parameters c1, . . . , cn are yet unspecified.

4. Use the initial conditions x(0) = v1, . . . , x
(n−1)(0) = vn to determine c1, . . . , cn and find the unique

solution to the intial value problem.

Remark. If the equation is homogeneous to begin with, omit step 2.

Alternatively, you can solve the initial value problem using the Laplace transform (section 3.3, or by
converting the equation to a first order system (section 4).

3.1 Homogeneous Solutions

Given a differential operator p(D), the solutions to the homogeneous equation

p(D)x = (a0D
n + a1D

n−1 · · ·+ an)x = 0

correspond to the roots of the associated characteristic polynomial

p(s) = a0s
n + · · ·+ an = 0

It will have n roots r1, . . . rn, some of which may be complex. Assuming the roots are distinct, we have
corresponding independent solutions

xi(t) = erit, i = 1, . . . n

We typically write complex exponentials in terms of sines and cosines. The case of repeated roots is discussed
below.

In the case of the second order equation

x′′ + bx′ + cx = (D2 + bD + c)x = 0

we have roots (from the quadratic formula)

s =
1
2

(
−b±

√
b2 − 4c

)
There are three cases to consider.

1. r1 and r2 are both real, and r1 6= r2. In this case the solutions are er1t and er2t and

xh(t) = c1e
r1t + c2e

r2t

2. r1 = r2 is a repeated root. Write r = r1 = r2. Then the solutions are ert and tert. (In general,
for an nth order ODE, if a root is a repeated root with multiplicity k, the solutions will be given by
tjert, j = 0, . . . , k). So

xh(t) = ert(c1 + c2t)
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3. r1, r2 are complex, and therefore given by a± ib. Then the corresponding real valued solutions are
eat cos bt and eat sin bt, and

xh(t) = eat(c1 cos bt+ c2 sin bt)

If the real part a = 0 is equal to zero, the homogeneous solution is periodic. If the real part is
nonzero a 6= 0, the solutions are not periodic, but we still refer to b as the pseudofrequency, with
corresponding pseudoperiod 2π/b.

Example. Find the general solution to the homogeneous ODE x′′′ − 6x′′ + 11x′ = 0.

Solution. We first write the equation as

(D3 − 6D2 + 11D)x = 0

so p(s) = s3 − 6s2 + 11s = s(s2 − 6s+ 11). The roots are s = 0 and s = r±, where

r± =
1
2

(6±
√

36− 44) =
1
2

(6± 2
√

2i) = 3±
√

2i

So xh(t) = c1x1(t) + c2x2(t) + c3x3(t) with

x1(t) = 1

x2(t) = e3t cos
√

2t

x3(t) = e3t sin
√

2t

so x2(t) and x3(t) have pseudofrequency
√

2.

Example. Find the general solution to the homogeneous ODE x′′ + 6x′ + 9x = 0.

Solution. We first write the equation as

(D2 + 6D + 9)y = 0

and the chacteristic root equation is p(s) = s2 + 6s + 9 = (s + 3)2 = 0 and has the double root s = −3.
Hence the homogeneous solution will be

xh(t) = c1e
−3t + c2te

−3t

3.2 Particular Solutions

For certain types of input functions f(t), we have direct methods for finding a particular solution.

3.2.1 Exponential Response

In the case that the input is exponential

f(t) = eαt, α a complex number

then the particular solution will also have the form of an exponential. Its exact form depends on the
differential operator. Suppose then, that we seek a particular solution to

p(D)x = eαt

The exponential response formula gives the result as follows

12



• ERF: p(α) 6= 0. In this case, a particular solution will be given by

xp(t) =
eαt

p(α)

• ERF’: p(α) = 0 but p′(α) 6= 0, where p′(s) = d
dsp(s). In this case, a particular solution is given by

xp(t) =
teαt

p′(α)

• ERFk: p(α) = p′(α) = · · · = p(k−1)(α) = 0, but p(k)(α) 6= 0. Then a particular solution is

xp(t) =
tkeαt

p(k)(α)

Example. Given the ODE x′′ + 2x′ − 3x = f(t), find a particular solution when f(t) = e2t and when
f(t) = e−3t.

Solution. First, we write x′′ + 2x′ − 3x = (D2 + 2D − 3)x. The roots of p(s) = (s+ 3)(s− 1) are 1 and −3.
In the first case, f(t) = e2t we have p(2) 6= 0, so ERF applies.

xp(t) =
e2t

(22 + 2 · 2− 3)
=
e2t

5

In the second case, α = −3 is a single root, and so p(−3) = 0, but p′(−3) = 2(−3) + 2 6= 0, and we get

xp(t) =
te−3t

2(−3) + 2
= − te

−3t

4

When f(t) = sin bt or cos bt, we consider cos bt = Re
(
eibt
)

and sin bt = Im
(
eibt
)

and proceed as above.
For a general product of exponentials with sines or cosines, we use eat cos bt = Re

(
e(a+ib)t

)
, and can apply

the exponential response formula where α = a + ib. Remember to take the real or imaginary part of the
resulting xp(t) to get the correct solution!

Example. Find a particular solution to x′′ − 4x′ + 5x = e2t sin t.

Solution. The characteristic polynomial associated to p(D) is

p(s) = s2 − 4s+ 5

Using the quadratic formula, we have the roots

s =
4±
√

42 − 4 · 5
2

= 2± i

Writing f(t) = Im
(
e(2+i)t

)
, we see that the coefficient in the exponent is a single root so we can use the

ERF’ formula. Taking a derivative of p we get p′(s) = 2s− 4. Thus

xp(t) = Im
(

te(2+i)t

2(2 + i)− 4

)
= Im

(
te(2+i)t

2i

)
= Im

(
(−2i)te(2+i)t

4

)
= Im

(
te2t

4
(−2i cos t+ 2 sin t)

)
= − te

2t cos t
2

13



3.2.2 Undetermined Coefficients

When the input has the form of a polynomial times a (possibly complex) exponential,

f(t) = q(t)eαt, q(t) a polynomial

the particular solution will have the same form; however, we may have to shift the degree of the resulting
polynomial depending on whether or not p(α), p′(α), etc., vanish. In any case, we “guess” xp(t) to have the
corresponding form, with undetermined coefficients, which we solve for by plugging xp(t) into the equation.

The method goes by the name of undetermined coefficients. Suppose q(t) is a degree k polynomial
(it’s highest power term is tk). If

• p(α) 6= 0: then we guess xp(t) to be

xp(t) = (general degree k poly)eαt = (a0t
k + a1t

k−1 + · · ·+ ak−1t+ ak)eαt

where a0, . . . , ak are constants to be determined by plugging xp(t) into the equation.

• p(α) = 0, but p′(α) 6= 0: then we guess

xp(t) = (general degree k poly)teαt = (a0t
k+1 + a1t

k + · · ·+ ak−1t
2 + akt)eαt

and solve for a0, . . . , ak by plugging in.

• p(α) = p′(α) = · · · = p(l−1)(α) = 0, but p(l)(α) 6= 0: then we guess

xp(t) = (general degree k poly)tleαt = (a0t
k+l + a1t

k+l−1 + · · ·+ ak−1t
l+1 + akt

l)eαt

and solve for a0, . . . , ak by plugging in.

Remark. Note that the cases are the same as the exponential response formula. In fact, ERF is a special
case of undetermined coefficients where q(t) is a polynomial of degree 0; in this case ERF tells you what the
resulting undetermined coefficient a0 is, namely a0 = p(α)−1, or p′(α)−1, etc.

Note also that undetermined coeffients also includes the case where f(t) = q(t) is just a polynomial. In
this case we take α = 0 (since indeed, q(t) = q(t)e0·t), so the particular solution to guess depends on to what
degree 0 is a root of p(s).

Example. Find a particular solution to x′′ + 3x′ +Ax = t2 + 1 when A = 2 and when A = 0.

Solution. Start with A = 2. We have p(s) = s2 + 3s + 2, and since the input has the form (t2 + 1)e0t, and
p(0) 6= 0, we guess a solution of the form

xp(t) = at2 + bt+ c

where a, b and c are arbitrary. When evaluating the left hand side on xp(t), consider organizing your
computation as follows:

2xp
+3x′p
+x′′p

= t2 + 1

 =


2
(
at2 + bt + c

)
+3

(
2at + b

)
+1

(
2a
)

= (2a)t2 + (2b+ 6a)t + (2c+ 3b+ 2a)

We conclude

2at2 + (2b+ 6a)t+ (2c+ 3b+ 2a) = t2 + 1, =⇒ a =
1
2
, b = −3

2
, c =

9
4

Thus, for A = 2, xp(t) = 1
4

(
2t2 − 6t+ 9

)
.
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When A = 0, p(s) = s2 + 3s, and we have p(0) = 0 but p′(0) 6= 0. So we guess a solution of the form

xp(t) = at3 + bt2 + ct

and we compute
3x′p
+x′′p

= t2 + 1

 =


3
(
3at2 + 2bt + c

)
+1

(
6at + 2b

)
= (9a)t2 + (6b+ 6a)t + (3c+ 2b)

We get

a =
1
9
, b = −1

9
, c =

11
27

So for A = 0, xp(t) = 1
9

(
t3 − t2 + 11

3 t
)
.

Example. Find a particular solution to

x′′ + 7x′ + 10x = 6te−2t

Solution. We have p(s) = s2 + 7s + 10 = (s + 2)(s + 5) so p(−2) = 0 but p′(−2) 6= 0. Since q(t) = t is a
degree 1 polynomial, we guess xp(t) of the form

xp(t) = (at+ b)te−2t = (at2 + bt)e−2t

We plug this into the equation to solve for a and b. It is convenient to organize the computation as follows
(remember also to include the effect of differentiating the e−2t when computing the derivatives!)

10xp

+ 7x′p

+ 1x′′p

= 6te−2t


=



10
(
at2 + bt + 0

)
e−2t

+7
(
− 2at2 + (2a− 2b)t + b

)
e−2t

+1
(

4at2 + (−4a− 2(2a− 2b))t + ((2a− 2b)− 2b)
)

e−2t

=
(

0t2 + 6at + (2a+ 3b)
)

e−2t

so we must have
6a = 6, (2a+ 3b) = 0 =⇒ a = 1, b = −2/3

We conclude that
xp(t) = (t2 − 2/3t)e−2t

is a particular solution.

3.2.3 Fourier Series for Periodic Inputs

When the input function to a linear equation is periodic, that is, f(t+P ) = f(t) for some period P , we can
use Fourier series to construct a particular solution. For general techniques of Fourier series, see appendix
B; here we will focus on the application to particular solutions.

The idea is to express f(t) by its Fourier series, and then construct the particular solution one term at
a time. Suppose we want to solve

p(D)x = f(t) =
a0

2
+
∞∑
n=1

an cos
(
nπt

L

)
+
∞∑
n=1

bn sin
(
nπt

L

)
We let xan

(t) and xbn
(t) be the particular solutions to the following ODE

p(D)xa0 =
a0

2

p(D)xan
= an cos

(
nπt

L

)
p(D)xbn = bn sin

(
nπt

L

)
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Then, by the additive properties of linear differential equations (see section 1), a particular solution to the
original problem will be given by

xp(t) = xa0(t) +
∞∑
n=1

xan
(t) +

∞∑
n=1

xbn
(t)

Remark. Depending on the operator p(D), it may be the case that each particular solution xan(t) and xbn(t)
has the form of sines, cosines and constant terms. If this happens, then the sum xp(t) is itself a Fourier series
and so the response will also be periodic. If however, any one of the particular solutions xan

(t) or xbn
(t)

has a different form (such as t cos(nπt/L) from the ERF’ formula when i(nπ/L) is a root of p(s)), then the
resulting xp(t), while still a particular solution, will not be periodic.

Example. Find a particular solution to x′′ + kx = f(t), where f(t) is the odd periodic extension of t with
period 4 (a sawtooth wave). For what k will the solution be periodic?

Solution. The Fourier series for f(t) is computed in an example in section B. We obtain

f(t) =
∑
n

bn sin
(
nπt

2

)
, bn =

4(−1)n+1

nπ

We proceed term by term, seeking a particular solution to the equation

x′′n + kxn = bn sin
(
nπt

2

)
For this we can use the exponential response formula (3.2.1), thinking of xn = Im(x̃n), where

x̃′′n + kx̃n = bne
i(nπ/2)t

Provided p (i(nπ/2)) = k − (nπ/2)2 6= 0, we can use ERF, to obtain

x̃n(t) =
bn

k − (nπ/2)2
ei(nπ/2)t =⇒ xn(t) =

bn
k − (nπ/2)2

sin
(
nπt

2

)
So the condition which guarantees a periodic particular solution is

k 6=
(nπ

2

)2

, for any n

in which case

xp(t) =
∑
n

b̃n sin
(
nπt

2

)
, b̃n =

bn
k − (nπ/2)2

=
4(−1)n+1

nπ (k − (nπ/2)2)

Since the characteristic polynomial p(s) = s2 + k = (s+ ik)(s− ik) has purely imaginary roots, the general
solution will also be periodic in this case.

However, if for example, k = π2/4, so that it violates our condition when n = 1, the solution will not be
periodic, since we obtain

xp(t) = − t
π

cos
(
πt

2

)
+
∞∑
n=2

b̃n sin
(
nπt

2

)
where the resonant3 term x1(t) was calculated using ERF’:

x1(t) = Im
(

t

p′(iπ/2)
ei(π/2)t

)
= Im

(
t

2i(π/2)
ei(π/2)t

)
= Im

(
−it
π

(
cos(πt/2) + i sin(πt/2)

))
= − t

π
cos
(
πt

2

)

3Resonance is the term we use for the response of a system of the form x′′ + ω2
0x = f(t) to an oscillator input f(t) which

has the same frequency ω0 as the homogeneous solutions. The particular solution (called the resonant) solution, grows without
bound becuase of the t in the amplitude.
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3.3 Laplace Transform Methods

The Laplace transform is a useful tool for solving initial value problems for a few reasons.

1. The transform itself automatically takes initial conditions into account, resulting in a particular solution
satisfying the initial data without the need to go through a general solution first.

2. It is well suited to handle input functions which are piecewise, that is,

f(t) =


f1(t) t0 < t < t1
f2(t) t1 < t < t2
...

...

3. In the case of purely zero initial conditions, solving by weight functions and convolution as in section
3.3.1 allows us to write down a direct general formula for the solution to an IVP with arbitrary f(t).

For general results and techniques regarding the Laplace transform, see appendix C. Here we will focus
on its use in solving initial value problems.

Example. Use the Laplace transform to solve the initial value problem

x′′ + 7x′ + 10x = 6te−2t, x(0) = 0, x′(0) = 2

Solution. Taking the Laplace transform of both sides of the equation, we get

s2X(s)− sx(0)− x′(0) + 7 (sX(s)− x(0)) + 10X(s) = (s2 + 7s+ 10)X(s)− 2 =
6

(s+ 2)2

Note that the coefficient in front of X(s) is p(s) = s2 + 7s+ 10 = (s+ 2)(s+ 5), as will always happen. We
solve for X(s) to get

X(s) =
1

(s+ 2)(s+ 5)

(
6

(s+ 2)2
+ 2
)

=
1

(s+ 2)(s+ 5)

(
6

(s+ 2)2
+

2(s+ 2)2

(s+ 2)2

)
=

6 + 2(s+ 2)2

(s+ 2)3(s+ 5)

We must use partial fraction decomposition to write4

6 + 2(s+ 2)2

(s+ 2)3(s+ 5)
=

A

s+ 2
+

B

(s+ 2)2
+

C

(s+ 2)3
+

D

s+ 5

Heaviside coverup (see appendix C) applies to C and D to give

C =
6 + 2(−2 + 2)2

(−2 + 5)
=

6
3

= 2, D =
6 + 2(−5 + 2)2

(−5 + 2)3
=

6 + 18
−27

= −8
9

To obtain A and B we must put everything over a common denominator and compare sides (it’s best not to
expand everything out yet):

A(s+ 2)2(s+ 5) +B(s+ 2)(s+ 5) + C(s+ 5) +D(s+ 2)3 = 6 + 2(s+ 2)2

Comparing terms of order s3, we get

A+D = A− 8/9 = 0 =⇒ A =
8
9

4This is a more complicated partial fraction decomposition than you would have to do on an exam. We do it for this problem
so that we can compare with the solution obtained by earlier methods.
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Comparing terms of order s2 (count very carefully!), we get

5A+ 2(2A) +B + 3(2D) = B + 9A+ 6D = B + 3(8/9) = 2 =⇒ B = −6
9

= −2
3

So
X(s) =

8
9

1
s+ 2

− 2
3

1
(s+ 2)2

+
2

(s+ 2)3
− 8

9
1

s+ 5

and the inverse transform gives our solution

x(t) =
8
9
e−2t − 2

3
te−2t + t2e−2t − 8

9
e−5t

Note that the particular solution xp(t) = (t2 − 2/3t)e−2t for this operator was computed by the method
of undetermined coefficients in section 3.2.2. We can then easily check our Laplace transform answer with
what we would get via the general solution. Since p(s) = (s+ 2)(s+ 5), the general solution will be

xg(t) = c1e
−2t + c2e

−5t + (t2 − 2/3t)e−2t

Matching the initial conditions x(0) = 0, x′(0) = 2 gives c1 = 8/9, c2 = −8/9, which agrees with the
above.

Example. Find the solution to

x′′ + x =
{
t 0 < t < π/2
0 t > π/2 x(0) = x′(0) = 0

Solution. The input function is piecewise; we can write it in terms of step functions using the methods of
appendix C.

f(t) = t(u(t)− u(t− π/2))

We take the Laplace transform to get

(s2 + 1)X(s) = L
(
tu(t)− u(t− π/2)

(
(t− π/2) + π/2

))
=

1
s2
− e−π/2s

(
1
s2

+
π/2
s

)
X(s) =

1
s2(s2 + 1)

− e−π/2s
(

1
s2(s2 + 1)

+
π/2

s(s2 + 1)

)
We must do two partial fraction decompositions. First,

1
s2(s2 + 1)

=
A

s
+
B

s2
+
Cs+D

s2 + 1
1 = As(s2 + 1) +B(s2 + 1) + (Cs+D)s2

s3 : 0
s2 : 0
s : 0
1 : 1

=
=
=
=

A+ C
B +D
A
B

 =⇒ A = C = 0, B = 1, D = −1

Similarly,

π/2
s(s2 + 1)

=
A

s
+
Bs+ C

s2 + 1
π/2 = A(s2 + 1) + (Bs+ C)s

s2 : 0
s : 0
1 : π/2

=
=
=

A+B
C
A

 =⇒ C = 0, A = π/2, B = −π/2
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Thus, we get

X(s) =
1
s2
− 1
s2 + 1

− e−π/2s
(

1
s2
− 1
s2 + 1

+
π/2
s
− (π/2)

s

s2 + 1

)
x(t) = t− sin(t)− u(t− π/2)

(
(t− π/2)− sin(t− π/2) + π/2− π/2 cos(t− π/2)

)
= t− sin(t)− u(t− π/2)

(
t+ cos(t)− π/2 sin(t)

)
x(t) =

{
t− sin t 0 < t < π/2
(π/2− 1) sin(t)− cos(t) t > π/2

3.3.1 Weight Function, Transfer Function, & Convolution

To any given differential operator p(D), we can associate the corresponding weight function, which is the
solution to the initial value problem

p(D)w(t) = δ(t), w(0) = w′(0) = · · · = 0

where δ(t) is the Dirac delta function. It is important here that the initial conditions are identically 0,
sometimes referred to as rest initial conditions . Taking the Laplace transform of both sides yeilds

p(s)W (s) = 1 =⇒ L(w(t)) = W (s) =
1
p(s)

We call W (s) the transfer function. Note that knowing the weight function is equivalent to knowing the
differential operator, since we can compute p(D) from p(s) = 1/W (s).

Remark. An equivalent characterization of the weight function is as the solution to the initial value problem

p(D)w(t) = 0, w(0) = w′(0) = · · ·w(n−2)(0) = 0, w(n−1)(0) = 1/a0

where n is the order of the equation, and a0 is the top order coefficient of p(D) = a0D
n + · · · . This follows

by the Laplace transform, since the left hand side will have a term −a0w
(n−1)(0) coming from the transform

of the highest derivative.

The main feature of the weight function is that, once we know w(t) for a given operator p(D), we can
solve the corresponding initial value problem (with rest initial conditions)

p(D)x(t) = f(t), x(0) = x′(0) = · · · = 0

for any input f(t), by taking the convolution (see appendix C.1)

x(t) = (w ∗ f)(t) =
∫ t

0

w(τ)f(t− τ) dτ

Thus, we have a direct formula for the solution with arbitrary input function without having to re-solve the
equation every time.

Example. Write an integral formula in terms of f(t) for the solution to

x′′ + 6x′ + 9x = f(t), x(0) = x′(0) = 0

Solution. We first determine w(t), which satisfies

w′′ + 6w′ + 9w = δ(t), w(0) = w′(0) = 0 or w′′ + 6w′ + 9w = 0, w(0) = 0, w′(0) = 1
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by our favorite methods. We will do this two ways. Using the Laplace transform, and p(s) = s2 + 6s+ 9 =
(s+ 3)2, we have

w(t) = L−1

(
1

(s+ 3)2

)
= te−3t

Alternatively, we can use the characteristic roots (−3, repeated root), to obtain the general solution to
w′′ + 6w′ + 9w = 0,

wg(t) = c1e
−3t + c2te

−3t

The initial conditions w(0) = 0 and w′(0) = 1 force c1 = 0, and

w′(0) = c2 = 1

In any case, then the solution to the original equation in x can be written as

x(t) = w(t) ∗ f(t) =
∫ t

0

τe−3τf(t− τ) dτ =
∫ t

0

f(τ)(t− τ)e−3(t−τ) dτ = f(t) ∗ w(t)

Example. Suppose a solution to

p(D)w(t) = δ(t), w(0) = w′(0) = · · · = 0

is given by
w(t) = e−2t

where p(D) is a constant coefficient linear differential operator. Find the solution to the initial value problem

p(D)x(t) = e−t, x(0) = x′(0) = · · · = 0

Solution. Even though we don’t know the operator, we can write down the solution as

x(t) = w(t) ∗ e−t = e−2t ∗ e−t

=
∫ t

0

e−2se−(t−s) ds = e−t
∫ t

0

e−s ds

= −e−te−s
∣∣∣t
0

= −e−2t + e−t

since we have rest initial conditions.
Alternatively, using the Laplace transform, we can recover p(D) by

W (s) =
1
p(s)

= L(e−2t) =
1

s+ 2

so
p(D) = D + 2

and we can solve by any other method.

4 Systems of Equations

See section 1 for definitions and terminology. We deal mostly with linear systems

x′(t) = Ax(t) + r(t)

The steps for solving such an equation are analogous to the ones for higher order linear equations discussed
in section 3.1, namely
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1. Find the homogeneous solution xh(t) = c1x1(t) + · · ·+ cnxn(t), as described in section 4.2, where
xi(t) solves x′i = Axi.

2. (If applicable), find a particular solution xp(t) to x′p = Axp + r, as described in section 4.4. Then
the general solution is

x(t) = xh(t) + xp(t) = c1x1(t) + · · ·+ cnxn(t) + xp(t)

3. (If applicable), Given an initial condition x(0) = x0, solve for the constants ci to get the solution to
the initial value problem .

For nonlinear systems, the best we can do is get a qualitative picture of the solutions using the graphical
methods of section 4.6.

4.1 Relationship to Higher Order Equations

You can always convert back and forth between nth order constant coefficient linear equations and first order
n-dimensional systems of ODEs. Starting with the nth order equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = f(t)

define new variables (which will be the vector components)

x1 = y

x2 = y′

...
...

xn = y(n−1)

Taking derivatives, we have by definition for the first n− 1 variables,

x′1 = y′ = x2

x′2 = x3

...
...

x′n−1 = xn

The derivative of xn is y(n), which we can solve for in the original equation, replacing derivatives of y by
their corresponding xi variables

x′n = −a1xn − · · · − anx1 + f(t)

So

x′(t) = Ax(t)+f(t), x(t) =


y
y′

...
y(n−1)

 ,


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 , f(t) =


0
0
...

f(t)


A is called the companion matrix to the original equation.

Example. Convert y′′ + 3y′ + 2y = et to a two dimensional system
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Solution. We have

x1 = y

x2 = y′

So

x′1 = y′ = x2

x′2 = y′′ = −3y′ − 2y + et = −3x2 − 2x1 + et

Which we can write as [
x′1
x′2

]
=
[

0 1
−2 −3

] [
x1

x2

]
+
[

0
et

]

We illustrate the conversion from a 2 dimensional system to a second order equation by example.

Example. Convert the system [
x′1
x′2

]
=
[

3 1
−1 1

] [
x1

x2

]
+
[
t2

et

]
into a single, second order equation

Solution. Choose one of the two variables which will be the second order variable, say x1. Start by taking
the derivative of the corresponding equation

x′′1 = 3x′1 + x′2 + 2t = 3x′1 + (−x1 + x2 + et) + 2t

where we substituted the other equation in for x′2. We still need to get rid of the x2 term, which we can do
by using the first equation (we’ve only used the derivative of the first equation, not the equation itself, so
this will not lead to any redundancy). Solving the first equation for x2 and substituting, we get

x′′1 = 3x′1 + (−x1 + (x′1 − 3x1 − t2) + et) + 2t = 4x′1 − 4x1 − t2 + 2t+ et

Or, in more standard form
x′′1 − 4x′1 + 4x1 = −t2 + 2t+ et

4.2 Homogeneous Solutions

Given a n× n system
x′ = Ax

we seek n linearly independent solutions x1, . . . ,xn. Supposing these solutions to have the form of an
exponential in t times a constant vector (in analogy with the higher order equations of section 3.1), we guess

x(t) = eαtv

and plug in.
(eαtv)′ = αeαtv = Aeαtv ⇐⇒ αv = Av

We see that this will be a solution provided α is an eigenvalue with corresponding eigenvector v. For a
discussion of eigenvalues and eigenvectors, see appendix D.1.

To sum, the general solution will have the form

xh(t) = c1x1(t) + · · ·+ cnxn(t)

where xi(t) is a solution corresponding to eigenvalue λi. As for the individual solutions xi(t), there are four
cases to consider, and examples are provided below:
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1. λ1, . . . , λn are real and distinct. In this case, there will be n linearly independent eigenvectors
v1, . . . ,vn, each corresponding to an eigenvalue, and each individual solution has the form

xi(t) = vieλit

2. Some of λ1, . . . , λn are complex. In this case, since the coefficients of A are real, the complex
eigenvalues will come in conjugate pairs λj = a+ ib, and λk = a− ib. To get two linearly independent
solutions for λj and λk, it is sufficient to choose one of them, say λj = a + ib, and compute its
eigenvector vj which will have complex entries. Then we can take

xj = Re
(
vje(a+ib)t

)
, xk = Im

(
vje(a+ib)t

)
3. λi is repeated with multiplicity k, but it has k independent eigenvectors. This is called the

complete case for repeated eigenvalues. In this case, the solution is identical to case 1, simply treating
λi as k distinct eigenvalues. Thus if v1, . . . ,vk are its eigenvectors, we have k independent solutions

xi1 = v1e
λit, . . . , xik = vkeλit

4. *(Will not be on exam!)* λi is repeated with multiplicity k, but it has fewer than k
independent eigenvectors. This is called the defective case for repeated eigenvalues. In this case
we can find chains of generalized eigenvectors (see below). Say we have two independent eigenvectors
v11 and v21 . Then we can find chains {v11 , . . . ,v1l

} and {v21 , . . . ,v2m
} where l+m = k, so there are a

total of k generalized eigenvectors. The equations defining the chains of eigenvectors are (A−λI)v1l
=

v1l−1 , . . . , (A− λI)v12 = v11 , (A− λI)v11 = 0; so we can start with the beginning of the chain, which
is a true eigenvector, and inductively solve for the successive elements of the chain. Once we have done
this, we have independent solutions

x11 = v11e
λit

x12 = (v11t+ v12) eλit

x12 =
(

v11

t2

2
+ v12t+ v13

)
eλit

...
...

x21 = v21e
λit

x22 = (v21t+ v22) eλit

x22 =
(

v21

t2

2
+ v22t+ v23

)
eλit

...
...

Example. Find the general solution to x′ = Ax, where

A =
[

2 4
0 −1

]
Solution. We must compute the eigenvalues and eigenvectors of A as described in appendix D.1. To find the
eigenvalues, we set

0 = det (A− λI) = det
∣∣∣∣ 2− λ 4

0 −1− λ

∣∣∣∣ = (2− λ)(−1− λ) = λ2 − λ− 2
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Alternatively, we can use the direct formula for 2× 2 matrices given by (see appendix D.1)

det (A− λI) = λ2 − tr Aλ+ det A

which agrees with our answer. The eigenvalues are −1 and 2, and so are distinct. To find the eigenvector
corresponding to λ = −1, we solve into the equation (A− λI)v = 0 to get

(A− (−1)I)v =
[

3 4
0 0

] [
v1
v2

]
=
[

0
0

]
=⇒ 3v1 + 4v2 = 0

so we can take

v1 =
[

4
−3

]
Similarly, for the eigenvalue λ = 2 we have[

0 4
0 −3

] [
u1

u2

]
=
[

0
0

]
=⇒ u2 = 0

So we can take

v2 =
[

1
0

]
The general solution is

x(t) = c1

[
4
−3

]
e−t + c2

[
1
0

]
e2t

Example. Find the general solution to x′ = Ax, where

A =
[

1 −5
1 3

]
Solution. The characteristic polynomial is

λ2 − 4λ+ 8 = 0 =⇒ λ = 2± 2i

We have complex eigenvalues. We proceed to find two independent real valued solutions as described above:
we choose one of these eigenvalues, find its eigenvector, and take real and imaginary parts at the end to get
independent solutions. So take λ = 2 + 2i. Substituting into (A− λI)v = 0 we have the equation[

−1− 2i −5
1 1− 2i

] [
v1
v2

]
=
[

0
0

]
This gives us two equations which are the same (checking this is a good exercise in complex arithmetic), one
is v1 + (1− 2i)v2 = 0, and we can take the solution

v =
[

1− 2i
−1

]
=
[

1
−1

]
− i
[

2
0

]
Then we have

x1 = Re
(
e2t (cos 2t+ i sin 2t)

[
1
−1

]
− i
[

2
0

])
= e2t

[
cos 2t+ 2 sin 2t
− cos 2t

]
x2 = Im

(
e2t (cos 2t+ i sin 2t)

[
1
−1

]
− i
[

2
0

])
= e2t

[
sin 2t− 2 cos 2t
− sin 2t

]
x = c1x1 + c2x2
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Example. Find the general solution to x′ = Ax, where

A =

 −4 6 0
0 2 0
0 6 −4


Solution. First we need to solve det (A − λI) = 0, which we calculate directly from the definition, using
cofactor expansion (see appendix D) to compute the determinant

det

∣∣∣∣∣∣
−4− λ 6 0

0 2− λ 0
0 6 −4− λ

∣∣∣∣∣∣ = (−4− λ)det
∣∣∣∣ 2− λ 0

6 −4− λ

∣∣∣∣ = (2− λ)(−4− λ)2 = 0

For λ = 2, we compute −6 6 0
0 0 0
0 6 −6

 v1
v2
v3

 =

 0
0
0

 =⇒

 v1
v2
v3

 =

 1
1
1


to get an eigenvector v1. For λ = −4, we have the eigenvector equation 0 6 0

0 6 0
0 6 0

 v1
v2
v3

 =

 0
0
0


which amounts to the single equation v2 = 0. Since we have two degrees of freedom, we can find two
independent eigenvectors, and the matrix is complete. We take

v2 =

 1
0
0

 , v3 =

 0
0
1


Then the general solution is

x(t) = c1x1(t) + c2x2(t) + c3x3(t)

x1 = e−2tv1 = e−2t

 1
1
1


x2 = e−4tv2 = e−4t

 1
0
0


x3 = e−4tv3 = e−4t

 0
0
1



4.3 Fundamental Matrices & Initial Value Problems

Given an n× n matrix A, a fundamental matrix for A is an n× n matrix F (t) satisfying

F ′(t) = AF (t), det F (t) 6= 0 for all t
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Writing the columns of F (t) as vectors x1(t), . . . ,xn(t),

F (t) =

 | · · · |
x1 · · · xn
| · · · |


the differential equation for F (t) amounts to the n equations

x′i(t) = Axi, i = 1, . . . , n

and the condition det F (t) 6= 0 is equivalent to x1, . . . ,xn linearly independent. Thus the following two
things are equivalent

• F ′(t) = AF (t), det F (t) 6= 0 for all t

• F (t) has columns consisting of linearly independent solutions x1, . . . ,xn to the equation x′ = Ax.

Remark. F (t) is not unique, as indeed we could consider rearranging its columns or multiplying them by
various constants to get a new fundamental matrix.

In light of the above, we can express the general solution to x′ = Ax as follows

x(t) = c1x1 + · · ·+ cnxn = F (t)c, c =

 c1
...
cn


Suppose we want to find a solution satisfying the initial condition x(0) = x0. Since F (0) is invertible (because
det F (0) 6= 0), we can write

x0 = x(0) = F (0)c
c = F (0)−1x0

Then
x(t) = F (t)c = F (t)F (0)−1x0

is the solution to the initial value problem. Note that while fundamental matrices are not unique, F (t)F (0)−1

is always the same matrix, even when computed by different fundamental matrices. In fact

F (t)F (0)−1 = etA, for any fundamental matrix F (t)

where etA is a matrix exponential, discussed in appendix D.2. So we conclude

• The solution to the initial value problem x′ = Ax, x(0) = x0 is given by

x(t) = etAx0

• We can compute etA for any matrix A from any fundamental matrix F (t) for A by setting

etA = F (t)F (0)−1

Example. Solve the initial value problem

x′ = Ax, x(0) =
[

1
0

]
, A =

[
3 4
4 −3

]
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Solution. Eigenvalues and eigenvectors for A are calculated in an example in appendix D.1. We have

λ1 = −5,v1 =
[

1
−2

]
λ2 = 5,v2 =

[
2
1

]
Thus we have linearly independent homogeneous solutions

x1 =
[

e−5t

−2e−5t

]
, x2 =

[
2e5t

e5t

]
and can form the fundamental matrix

F (t) =
[

e−5t 2e5t

−2e−5t e5t

]
and compute

F (0)−1 =
[

1 2
−2 1

]−1

=
1
5

[
1 −2
2 1

]
etA = F (t)F (0)−1 =

1
5

[
e−5t 2e5t

−2e−5t e5t

] [
1 −2
2 1

]
=

1
5

[ (
− 2e−5t + 2e5t

) (
− 2e−5t + 2e5t

)(
− 2e−5t + 2e5t

) (
4e−5t + e5t

) ]
The solution to the initial value problem is then

x(t) = etAx0 =
1
5

[ (
− 2e−5t + 2e5t

) (
− 2e−5t + 2e5t

)(
− 2e−5t + 2e5t

) (
4e−5t + e5t

) ] [
1
0

]
=

1
5

[ (
− 2e−5t + 2e5t

)(
− 2e−5t + 2e5t

) ]

4.4 Inhomogeneous Equations & Variation of Parameters

We can also use a fundamental matrix to find particular solutions to an inhomogeneous system

x′(t) = Ax(t) + r(t)

by a method called variation of parameters. This method works for any input function5 r(t).
The trick is as follows. First compute a fundamental matrix F (t) for A. Then guess a particular solution

of the form
xp(t) = F (t)v(t)

where v(t) is a yet-to-be-determined vector function of t. Plug this into the equation and use the product
rule6 to get

(F (t)v(t))′ = F ′(t)v(t) + F (t)v′(t) = A (F (t)v(t)) + r(t)

Since F (t) is a fundamental matrix, we have F ′(t) = AF (t), so the first terms on each side of the equation
cancel, and we get

F (t)v′(t) = r(t) =⇒ v′(t) = F (t)−1r(t)

using the fact that F (t) is invertible (since the other condition on a fundamental matrix is det F (t) 6= 0
for all t). We integrate (the lower limit of integration is unimportant; different choices will lead to different
particular solutions)

v(t) =
∫ t

0

F (τ)−1r(τ) dτ =⇒ xp(t) = F (t)v(t) = F (t)
∫ t

0

F (τ)−1r(τ) dτ

5For this reason, it is useful in the case of a single higher order inhomogeneous equation whose input function isn’t amenable
to the techniques of section 3.2. We can transform such an equation into an inhomogeneous first order system, find a particular
solution, and transform back.

6It is straightforward (and a good exercise!) to check that a product rule applies to matrix multiplication
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We emphasize that this formula is valid for any fundamental matrix F (t). In particular, if we use the
matrix exponential F (t) = etA, we have

xp(t) = etA
∫ t

0

e−τAr(τ) dτ

since
(
eτA
)−1 = e−τA as discussed in appendix D.2. Another fundamental matrix may give an easier integral

however.

Example. Find a particular solution to

x′(t) = Ax(t) = r(t), A =
[

1 −1
0 2

]
, r(t) =

[
et

0

]
Solution. First we find a fundamental matrix for A. Its eigenvalues and eigenvectors can be computed to
get

λ1 = 1,v1 =
[

1
0

]
, λ2 = 2,v2 =

[
1
−1

]
So we have two independent homogeneous solutions x1(t) = eλ1tv1 and x2(t) = eλ2tv2 and can form the
fundamental matrix

F (t) =
[
et e2t

0 −e2t
]

Using det F (t) = −e3t we compute (see appendix D for the formula for the inverse of a 2× 2 matrix)

F (t)−1 = −e−3t

[
−e2t −e2t

0 et

]
=
[
e−t e−t

0 −e−2t

]
Guessing xp(t) = F (t)v(t) leads as above to the equation

v(t) =
∫ t

0

F (τ)−1r(τ) dτ =
∫ t

0

[
e−t e−t

0 −e−2t

] [
et

0

]
dτ =

∫ t

0

[
1
0

]
dτ =

[
t
0

]
Then

xp(t) = F (t)v(t) =
[
et e2t

0 −e2t
] [

t
0

]
=
[
tet

0

]

Finally, using fundamental matrices and variation of parameters, we can express the complete solution
to an inhomogeneous initial value problem as an integral. That is, suppose we want to solve

x′ = Ax + r, x(0) = x0

The general solution can be written (see section 4.2 for explanation of the xh(t) term)

xg(t) = c1x1(t) + · · ·+ cnxn(t)︸ ︷︷ ︸
xh

+xp(t) = F (t)c︸ ︷︷ ︸
xh(t)

+F (t)
∫ t

0

F (τ)−1r(τ) dτ

Here it is convenient to set the lower limit of integration to be 0; we’ll see why in a second. Solving for c
which satisfies the initial condition as in 4.2, we compute

x0 = x(0) = F (0)c + F (0)
∫ 0

0

F (τ)−1r(τ) dτ = F (0)c =⇒ c = F (0)−1x0
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and so the complete solution is

x(t) = F (t)F (0)−1x0 + F (t)
∫ t

0

F (τ)−1r(τ) dτ

or, using the matrix exponential etA for our F (t),

x(t) = etAx0 + etA
∫ t

0

e−τAr(τ) dτ

Note the similarity with the integral formula you get for a single first order linear equation using integrating
factors as in section 2.2.

4.5 Phase Diagrams for Linear Systems

2× 2 linear systems
x′ = Ax

can be classified into 5 types depending on the behavior of solution curves in the x-y plane. These are

Type Stability Eigenvalues
Nodal source Unstable Both real, positive
Nodal sink Stable Both real, negative
Saddle Unstable Both real, opposite signs
Spiral source Unstable Complex, positive real part
Spiral sink Stable Complex, negative real part

A system is stable if all of its solutions approach the origin as t → ∞. A picture of each type can be seen
in figure 3, and examples are discussed below.

Example. Determine the type and sketch the phase diagram for

x′ = Ax, A =
[

2 4
0 −1

]
Solution. We examined this equation in section 4.2, and found eigenvalues/eigenvectors

λ1 = −1,v1 =
[

4
−3

]
, λ2 = 2,v2 =

[
1
0

]
This system is a saddle, and let us see why. Vector v1 lies along the line y = −3/4x in the plane. Any
solution to the equation which starts on this line will remain on it, since it will be given by the equation
(the initial condition will force c2 = 0)

x1(t) = c1e
−tv1, for some c1

So solutions along this line have exponentially decreasing magnitude from the e−t term, and approach the
origin.

On the other hand, v2 lies along the x-axis, and any solution starting on this axis will remain on it, since
it will be given by (initial conditions forcing c1 = 0 this time)

x2(t) = c2e
2tv2, for some c2

These solutions have exponentially increasing magnitude, and move away from the origin as t → ∞. For
this reason the saddle is unstable.

This is the saddle depicted in figure 3.c.
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Figure 3: Phase diagrams for a. Nodal source, b. Nodal sink, c. Saddle, d. Spiral source, e. Spiral sink

Example. Determine the type and sketch the phase diagram for

x′ = Ax, A =
[

1 −5
1 3

]
Solution. We examined this equation in section 4.2, and found that it had complex eigenvalues

λ = 2± 2i

and a general solution

x1 = Re
(
e2t (cos 2t+ i sin 2t)

[
1
−1

]
− i
[

2
0

])
= e2t

[
cos 2t+ 2 sin 2t
− cos 2t

]
x2 = Im

(
e2t (cos 2t+ i sin 2t)

[
1
−1

]
− i
[

2
0

])
= e2t

[
sin 2t− 2 cos 2t
− sin 2t

]
x = c1x1 + c2x2

Note that the coefficient in the exponent comes from the real part of the eigenvalues Re(2 ± 2i) = 2. The
magnitude of these solutions grows exponentially because of the e2t term, so this is a spiral source, with
solutions going away from the origin. For this reason it is unstable. The oscillatory functions contribute the
spiraling behavior; to determine whether the spiral is clockwise or counterclockwise, we can simply check
the following. Suppose a solution curve passes through the point (1, 0) at time t = 0, so

x(0) =
[

1
0

]
then its velocity at time t = 0 is given by the differential equation:

x′(0) = Ax(0) =
[

1 −5
1 3

] [
1
0

]
=
[

1
1

]
this velocity vector points up and to the right, so we conclude that our solutions are spiraling counterclockwise.
Some solution curves are sketched in figure 3.d.
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Example. Determine the type and sketch the phase diagram for

x′ = Ax, A =
[

17 −3
3 7

]
Solution. First we determine the eigenvalues and eigenvectors.

det (A− λI) = det
∣∣∣∣ 17− λ −3

3 7− λ

∣∣∣∣ = λ2 − 24λ+ 128 = (λ− 8)(λ− 16) = 0

so we have two real, positive eigenvalues. For λ1 = 8, we get the eigenvector

(A− 8I)v1 =
[

9 −3
3 −1

] [
a
b

]
=
[

0
0

]
=⇒ v1 =

[
1
3

]
and for λ2 = 16, we get

(A− 16I)v2 =
[

1 −3
3 −9

] [
a
b

]
=
[

0
0

]
=⇒ v2 =

[
3
1

]
Solutions starting along the line y = 3x through the vector v1 will remain on it, with magitude growing at
a rate e8t and hence travel away from the origin. Similarly, solutions starting on the line y = 1/3x through
the vector v2 will remain on the line, with magnitude growing at a rate e16t and hence travel away from the
origin. This system is therefore a nodal source, and is unstable.

To examine the behavior of solutions not on either of the eigenvector lines, note that such solutions will
be given by a linear combination

x(t) = c1e
8tv1 + c2e

16tv2

as t→∞, the second term clearly dominates, and so solutions will asymptotically approach the direction of
v2 for large t. As t→ −∞, the first term dominates, and so solutions asymptotically approach the direction
of v1 near the origin (since t→ −∞). The phase diagram is depicted in figure 3.a.

4.6 Nonlinear Systems

A nonlinear (autonomous) system of two equations has the general form

x′ = f(x, y)
y′ = g(x, y)

We’d like to get a qualitative picture of how various solutions behave, and we can do so in analogy with
the phase diagrams of single equations in section 2.3.2. Near a critical point (x0, y0) such that f(x0, y0) =
g(x0, y0) = 0, we can approximate the system by the linear system

(x− x0)′ = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)
(y − y0)′ = gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0)

which follows by expanding f and g in Taylor series around the point (x0, y0) and throwing out any terms
which are quadratic or higher in the variables (x− x0), (y − y0). We can write this in matrix notation as

x′ = J(x0, y0)x

where J(x, y) is the Jacobian matrix

J(x, y) =
[
fx(x, y) fy(x, y)
gx(x, y) gy(x, y)

]
We can classify this linear system as one of the 5 types discussed in section 4.5, and sketch the corresponding
phase portrait near the critical point. Once we have done this for all of the critical points, we have a good
idea of what global solution curves look like.

To summarize, we develop a picture of solution curves in the x-y plane as follows
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Figure 4: Phase diagram for the nonlinear example

1. Find the critical points, which are points (x0, y0) such that f(x0, y0) = g(x0, y0) = 0.

2. Compute the Jacobian J(x0, y0) at each critical point.

3. Classify each critical point according to the behavior of the linearized system

x′ = J(x0, y0)x

4. Analyze long term behavior (showing the solutions are constrained in a particular region, etc.)

Example. Examine the behavior of the nonlinear system

x′ = x2 − 2x− xy
y′ = y2 − 4y + xy

which models a population x(t) of a prey species, and y(t) of a preadator species. What are the possible
eventual outcomes of the populations as t → ∞? What will be the outcome for any set of initial conditions
0 < x(0) < 2 and 0 < y(0) < 2?

Solution. First we find the critical points

0 = x(x− 2− y)
0 = y(y − 4 + x)

We have 4 possibilities:
(x0, y0) ∈ {(0, 0), (0, 4), (2, 0), (3, 1)}

The last point (3, 1) comes from solving the linear system

0 = (x− 2− y)
0 = (y − 4 + x)

}
⇐⇒ x− y = 2

x+ y = 4

The Jacobian matrix for this system is

J(x, y) =
[
fx fy
gx gy

]
=
[

2x− 2− y −x
y 2y − 4 + x

]
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• At the critical point (0, 0), we have

J(0, 0) =
[
−2 0
0 −4

]
which has eigenvalues and eigenvectors

λ1 = −2,v1 =
[

1
0

]
, λ2 = −4,v2 =

[
0
1

]
So is a nodal sink. (Note that for a source or sink, we don’t care too much about the eigendirections,
just that all solutions near the critical point are coming in).

• At (0, 4), we have

J(0, 4) =
[
−6 0
4 4

]
λ1 = −6, λ2 = 4

This has two real eigenvalues with opposite signs, so it is a saddle. In this case, we do care about the
eigendirections, so we compute

v1 =
[

5
−2

]
, v2 =

[
0
1

]
So solutions are approaching this critical point along the line y = −(2/5)x+ 4 (because of the negative
eigenvalue), and departing from it along the y-axis (corresponding to the positive eigenvalue).

• At (2, 0), we have

J(2, 0) =
[

2 −2
0 −2

]
λ1 = 2, λ2 = −2

which is also a saddle. We compute the eigenvectors

v1 =
[

1
0

]
, v2 =

[
1
2

]
So solutions are approaching along y = 2(x− 2) and departing along the x-axis.

• At (3, 1), we have (using the formula from appendix D.1 that eigenvalues satisfy λ2−tr Aλ+det A = 0)

J(3, 1) =
[

3 −3
1 1

]
, λ =

1
2

(
tr J ±

√
(tr J)2 − 4det J

)
=

1
2
(
4±
√

16− 24
)

= 2±
√

2i

So this is a spiral source (because of the positive real part). To determine its direction we compute
(see the complex eigenvalue example in section 4.5 for an explanation of this)[

3 −3
1 1

] [
1
0

]
=
[

3
1

]
so the spiral is counterclockwise.

The phase diagram is sketched in figure 4
The possible outcomes appear to be

1. x(t)→ 0, y(t)→ 0

2. x(t)→∞, y(t)→ 0

3. x(t)→ 0, y(t)→∞, and possibly

4. x(t)→∞, y(t)→∞
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It appears that all solutions inside the box 0 < x < 2, 0 < y < 2 approach (0, 0) as t → ∞. We can
verify this as follows. Provided the vector field f(x, y)i + g(x, y)j is always pointing into or along the box
along the boundary of the box, we can conclude that no solution will ever exit the box.

• Along the boundary y = 0, 0 < x < 2, we have[
f(x, 0)
g(x, 0)

]
=
[
x2 − 2x

0

]
is a vector whose y component is 0 and whose x component is negative, since x < 2 =⇒ x2 − 2x =
x(x− 2) < 0.

• Along the boundary x = 0, 0 < y < 2, we have[
f(0, y)
g(0, y)

]
=
[

0
y2 − 4y

]
points in the negative y direction since y < 2 =⇒ y2 − 4y = y(y − 4) < 0.

• Along the boundary x = 2, 0 < y < 2, we have[
f(2, y)
g(2, y)

]
=
[
−2y

y2 − 2y

]
the x component of this vector field is negative, so it points into the box.

• Along the boundary y = 2, 0 < x < 2, we have[
f(x, 2)
g(x, 2)

]
=
[
x2 − 4x
−4 + 2x

]
the y component of this vector field is negative, since 0 < x < 2 =⇒ −4 + 2x < 0.

We conclude that all solutions starting in the box must stay in the box. Moreover, the only two critical
points which could be approached by solutions in the box are (0, 0) and (2, 0). However, the axis along which
solutions approach (2, 0) is y = 2(x− 2) which does not intersect the box, so in fact all solutions in this box
approach the final value (0, 0).

A Complex Variables

A complex number is a number z which can be written in the Cartesian form

z = x+ iy, where x, y are real numbers.

and i2 = −1. The we define the real part Re(z) = x and imaginary part Im(z) = y to be the parts not
multiplying i and multiplying i, respectively. We can also write z in polar form

z = reiτ

where r ≥ 0 and 0 ≤ τ ≤ 2π. We can convert back and forth using Euler’s formula,

eiτ = cos τ + i sin τ

To go from Cartesian to polar form, we compute

r =
√
x2 + y2

τ = tan−1 y

x
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Figure 5: Vectors in the complex plane

and to go from polar to Cartesian we use

x = r cos τ
y = r sin τ

See Figure 5.
Also important are the reverse Euler formulas

cos τ =
eiτ + e−iτ

2

sin τ =
eiτ − e−iτ

2i
=
i(e−iτ − eiτ )

2

which are obtained by adding or subtracting eiτ = cos τ + i sin τ and e−iτ = cos τ − i sin τ .

A.1 Multiplication and Division

For two complex numbers z1 and z2, we can compute their product directly, using i2 = −1 by

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + i(x1y2 + x2y1) + i2y2y2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Alternatively, in polar form,
z1z2 = (r1eiτ1)(r2eiτ2) = r1r2e

i(τ1+τ2)

Division is easy in polar form:

z1
z2

=
r1e

iτ1

r2eiτ2
=
r1
r2
eiτ1e−iτ2 =

r1
r2
ei(τ1−τ2)

It is slightly trickier in Cartesian form. We write

z1
z2

=
x1 + iy1
x2 + iy2
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but then we need to get rid of the i in the denominator. We can always do this by multiplying by the
complex conjugate of z2, denoted by z2 which is defined for any complex number by

z = x− iy = re−iτ

where we change the sign in front of i. Back in our division problem, we get

z1
z2

=
x1 + iy1
x2 + iy2

=
x1 + iy1
x2 + iy2

x2 − iy2
x2 − iy2

=
(x1x2 + y1y2) + i(x2y1 − x1y2)

x2
2 + y2

2

A.2 Powers and roots

Taking powers of a complex number zn, is done in the usual manner in Cartesian form, (x+ iy)n, but gets
harder and harder as n gets large. It is most convienient to do these operations in polar form. Then to raise
z = reiτ to a power, simply compute

zn = (reiτ )n = rneinτ

That is r 7→ rn and τ 7→ nτ .
Roots are a bit trickier. We do the same thing, replacing n by 1/n, but we must remember that there are

n different complex roots of any complex number. To get them all, we note that eiτ = eiτ+2πi = eiτ+4πi = . . ..
Thus,

z1/n =
(
reiτ

)1/n
=
(
rei(τ+2kπ)

)1/n

= r1/nei(τ+2kπ)/n, k = 0, 1, 2, . . . n− 1

Example. Find the cube roots of i, that is (i)1/3.

Solution. First write i in polar form: since Re(i) = x = 0 and Im(i) = y = 1, we get, using the formulas
above,

r =
√
x2 + y2 = 1

τ = tan−1 y/x = tan−1 1 = π/2

The cube roots of i are then given by

(i)1/3 =
{

11/3ei(π/2)/3, 11/3ei(π/2+2π)/3, 11/3ei(π/2+4π)/3
}

=
{
eiπ/6, ei5π/6, ei3π/2

}
If we want to express these in Cartesian form, we can compute eiπ/6 =

√
3/2 + i/2, ei5π/6 = −

√
3/2 + i/2

and ei3π/2 = −i, so that
(i)1/3 =

{
±
√

3/2 + i/2,−i
}

A.3 Trigonometric Identities

Most trigonometric identities can be derived quite simply from Euler’s formula and the reverse Euler formula,
using multiplication of complex exponentials.

cos(α+β) = Re
(
ei(α+β)

)
= Re

(
eiαeiβ

)
= Re ((cosα+ i sinα)(cosβ + i sinβ)) = cos(α) cos(β)−sin(α) sin(β)
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and

sin(α+β) = Im
(
ei(α+β)

)
= Im

(
eiαeiβ

)
= Im ((cosα+ i sinα)(cosβ + i sinβ)) = sin(α) cos(β)+sin(β) cos(α)

The “double” angle, “half” angle identities, and so on are proved similarly.
Using the reverse Euler formula gives a convienient way to express powers of the trig functions sinn τ

and cosn τ in terms of cos kτ and sin kτ for 1 ≤ k ≤ n, and vice versa.

Example. Write sin3 τ in terms of sin kτ, cos kτ for k = 1, 3.

Solution. By the reverse Euler formula,

sin3 τ =
1
23

(
i(e−iτ − eiτ )

)3
=
i3

8
(
e−3iτ − 3e−iτ + 3eiτ − e3iτ

)
= − i

8
[(
e−3iτ − e3iτ

)
− 3

(
e−iτ − eiτ

)]
= −1

4
sin 3τ +

3
4

sin τ

Example. Write sin 4τ in terms of powers of cos τ , sin τ

Solution. We have
sin 4τ = Im

(
e4iτ

)
= Im

[(
eiτ
)4]

= Im
[
(cos τ + i sin τ)4

]
Expanding out using the binomial theorem, and throwing away everything which doesn’t multiply i, we get

sin 4τ = Im
(
cos4 τ − 6 cos2 τ sin2 τ + sin4 τ + 4i(cos3 τ sin τ − cos τ sin3 τ)

)
= 4 cos3 τ sin τ − 4 cos τ sin3 τ

A.4 Sinusoidal Identity

There is a nice trick for writing a linear combintation

a cosωτ + b sinωτ

in the form
A cos (ωτ − φ)

The trick is to write
a cosωτ + b sinωτ = Re ((a− ib)(cosωτ + i sinωτ))

Converting to polar form, we get (a − ib) = Ae−iφ where A =
(
a2 + b2

)1/2 and −φ = tan−1−b/a =
− tan−1 b/a so φ = tan−1 b/a. That is,

a cosωτ + b sinωτ = Re ((a− ib)(cosωτ + i sinωτ))
= Re

(
Ae−iφeiωτ

)
= Re

(
Aei(ωτ−φ)

)
= A cos (ωτ − φ)

where A =
(
a2 + b2

)1/2
and φ = tan−1 b/a
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B Fourier Series

It is a (rather deep) mathematical fact that we can express any periodic function as a series in sines and
cosines7. A periodic function f(t) is one such that

f(t) = f(t+ P ), for all t

and P is the period of f8. Setting L = P/2 to be the half-period, we can write f by its Fourier series

f(t) =
a0

2
+
∞∑
n=1

an cos
nπt

L
+
∞∑
n=1

bn sin
nπt

L

where

a0 =
1
L

∫ L

−L
f(t) dt

an =
1
L

∫ L

−L
f(t) cos

nπt

L
dt

bn =
1
L

∫ L

−L
f(t) sin

nπt

L
dt

If f(t) is even (f(t) = f(−t)), or odd (f(t) = −f(−t)), we have the following

• If f(t) is even, then bn = 0 for all n and

an =
2
L

∫ L

0

f(t) cos
nπt

L
dt

• If f(t) is odd, then an = 0 for all n and

bn =
2
L

∫ L

0

f(t) sin
nπt

L
dt

B.1 Periodic Extensions

Given a function f(t) which is defined on an interval [0, L], we can construct various periodic extensions
f̃(t), which are periodic functions agreeing with f(t) on [0, L]. These are constructed as Fourier series with
coefficients computed using f(t). We have

• the even extension of period P = 2L, f̃ev(t) = f̃ev(−t), where

f̃ev(t) =
a0

2
+
∞∑
n=1

an cos
nπt

L
, an =

2
L

∫ L

0

f(t) cos
nπt

L
dt

• the odd extension of period P = 2L, f̃od(t) = −f̃od(t), where

f̃od(t) =
∞∑
n=1

bn sin
nπt

L
, bn =

2
L

∫ L

0

f(t) sin
nπt

L
dt

7This can be stated by saying that sin nπt
L

and cos nπt
L

form an orthonormal basis in the space of periodic functions with
period 2L. The inner product is given by integration over a single period.

8There are many periods; for instance, 2P and 3P are also periods. We call the smallest such P “the” period.
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Example. Find the Fourier sine series for the odd, period 4 function f(t), such that f(t) = t on [0, 2].

Solution. The odd extension contains only sine terms, so we compute bn. In this case L = 2 is the half-period.

bn =
∫ 2

0

t sin
nπt

2
dt = − 2t

nπ
cos

nπt

2

∣∣∣∣∣
2

0

+
2
nπ

∫ 2

0

cos
nπt

2
dt = − 4

nπ
cosnπ +

2
nπ

[
2
nπ

sin
nπt

2

]2
0

But sin nπt
2 vanishes at both endpoints t = 0 and t = 2, and cosnπ = (−1)n. Thus we have

f(t) =
∑
n

bn sin
nπt

2

where

bn =
4(−1)n+1

nπ

B.2 Operations on Series

Given a function f(t) and its Fourier series, we can perform various operations on it to obtain the Fourier
series of related functions. For instance, we can get the series for the following transformations of f :

• f(t) 7→ cf(t) by multiplying each term in the series by c.

• f(t) 7→ f(ct) by replacing t by ct in each term

• f(t) 7→ f(t± L) by changing the sign of each term with n odd. This is because

cos
nπ(t± L)

L
= cos

(
nπt

L
± nπ

)
=
{
− cos nπtL n odd
cos nπtL n even

and similarly for sines.

• f(t) 7→ f(t− L/2) by using the formulas

cos
nπ(t− (L/2))

L
= cos

(
nπt

L
− nπ

2

)
=


cos nπtL n = 0, 4, 8, . . .
− cos nπtL n = 2, 6, 10, . . .
sin nπt

L n = 1, 5, 9, . . .
− sin nπt

L n = 3, 7, 11, . . .

and similarly for sines.

• f(t) 7→
∫ t
0
f(t′) dt′ by integrating each term. The constant term (if any) will have to be computed

explicitly (see example below).

• f(t) 7→ f ′(t) by taking the derivative of each term. Note that this is only valid if the original series
has no points of discontinuity, e.g. if f(t) is everywhere continuous.

Example. Find the Fourier cosine series for the even extension of 1
2 t

2 on [0, 2] using the example above.

Solution. Since
∫ t
0
t′ dt′ = t2/2, we will integrate the sine series

∑
n

4(−1)n+1

nπ
sin

nπt

2
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term-wise to get our result. We compute∫ t

0

bn sin
nπt′

2
dt′ = −bn

2
nπ

cos
nπt′

2

∣∣∣∣∣
t

t′=0

= bn
2
nπ
− bn

2
nπ

cos
nπt

2

Integrating a sine series therefore gives a cosine series with an given by

an = −bn
2
nπ

=
8(−1)n

n2π2

Collecting the constant terms, we have

a0 =
∞∑
n=1

8(−1)n+1

n2π2

which isn’t very explicit. We can compute a0 directly, using the definition9

a0 =
1
2

∫ 2

−2

t2

2
dt =

1
2

∫ 2

0

t2 dt =
23

6
=

4
3

In any case, the desired cosine series for the even extension of t2 on [0, 2] is

a0

2
+
∑
n

an cos
nπt

2
, a0 =

4
3
, an =

8(−1)n

n2π2

C Laplace Transform

For a function f(t), the Laplace transform L(f) = F (s) is defined by

L(f) = F (s) =
∫ ∞

0

e−stf(t) dt

Note that L is linear, that is
L (af(t) + bg(t)) = aL (f(t)) + bL (g(t))

You should think of L as a map which takes a function f(t) of t as its input, and gives a function F (s) of
s as its output. The Laplace transform takes most of the basic functions of t, such as tn, cos t, sin t, eαt and
transforms them into rational functions of s, that is

F (s)
typically

=
q(s)
p(s)

, q(s), p(s) polynomials in s

Furthermore, it transforms the operation of differentiation in t into multiplication in s, thus transforming
differential equations in t into algebraic ones in s. A table of Laplace transforms follows

f(t) F (s) =
∫∞
0
e−stf(t) dt

af(t) + bg(t) aF (s) + bG(s)

eatf(t) F (s− a)

tf(t) −F ′(s)

u(t− a)f(t− a) e−asF (s)

f ′(t) sF (s)− f(0)

f ′′(t) s2F (s)− sf(0)− f ′(0)

f(t) ∗ g(t) F (s)G(s)

f(t) F (s)

1 1
s

tn n!
sn+1

eat 1
s−a

sinωt ω
s2+ω2

cosωt 1
s2+ω2

δ(t) 1

9As an interesting corollary to our computation therefore, we find the value of the series
P∞
n=1

8(−1)n+1

n2π2 = 4
3
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Example. Verify the identities

L(tk) =
k!
sk+1

L
(
eαtg(t)

)
= G(s− α)

L (sinβt) =
1

s2 + β2

Solution. Integrating by parts, we have

L(tk) =
∫ ∞

0

e−sttk dt = − t
ke−st

s

∣∣∣∣∣
∞

0

+
k

s

∫ ∞
0

tk−1e−st dt = 0 +
k

s
L(tk−1)

Repeating, we have L(tk) = k!
skL(1), so now we need only compute L(1):

L(1) =
∫ ∞

0

e−st dt = −e
−st

s

∣∣∣∣∣
∞

0

=
1
s

So
L(tk) =

k!
sk+1

Now assume given a function g(t) with Laplace transform G(s). We have

L
(
eαtg(t)

)
=
∫ ∞

0

e−steαtg(t) dt =
∫ ∞

0

e(−(s−α)t)g(t) dt = G(s− α)

In particular since L(1) = 1/s (t0 = 1), we have

L
(
eαt
)

=
1

s− α
Finally, we can use the reverse Euler identity

sinβt =
eiβt − e−iβt

2i

to get

L(sinβt) =
1
2i
(
L(eiβt)− L(e−iβt)

)
=

1
2i

(
1

s− iβ
− 1
s+ iβ

)
=

1
2i

(
(s+ iβ)− (s− iβ)

s2 + β2

)
=

β

s2 + β2

To compute the inverse Laplace transform of a function F (s), we typically use partial fraction decom-
position to split F (s) up into a sum of terms whose inverse Laplace transform is obvious by examining the
table.

In the examples that follow, we will use the Heaviside cover up method for partial fraction decom-
position, which allows us to compute the coefficients of some of the partial fractions quickly. In particular,
it applies to linear factors only, and in the case of repeated linear factors, only to the one with the highest
degree. See the examples for details.
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Example. Find L−1
(

1
(s2+4)(s−1)

)
.

Solution. The denominator is already factored into the irreducible factors (s2 + 4) and (s − 1). Therefore
we want A, B and C such that

1
(s2 + 4)(s− 1)

=
As+B

s2 + 4
+

C

s− 1

The Heaviside cover up method is applicable to find C, since (s− 1) is a linear factor, and no higher powers
of (s − 1) appear in the denominator of any terms. We “cover up” the (s − 1) in the denominator, and
evaluate at s = 1. That is,

C =
1

(s2 + 4)

∣∣∣∣∣
s=1

=
1
5

We then proceed as usual to find A and B.

As+B

s2 + 4
+

1/5
s− 1

=
(As+B)(s− 1) + 1/5(s2 + 4)

(s2 + 4)(s− 1)
=

1
(s2 + 4)(s− 1)

Looking at coefficients of s2 in the numerator, we find

(A+ 1/5)s2 = 0s2

So A = −1/5, and examining coefficients of s,

(B −A)s = 0s

So B = A = −1/5. Thus,
1

(s2 + 4)(s− 1)
=

1
5

(
− s+ 1
s2 + 4

+
1

s− 1

)
We know L(et) = 1

s−1 , but the other term needs a little more nudging. We write

s+ 1
s2 + 4

=
s

s2 + 4
+

1
2

2
s2 + 4

Then it is obvious by looking at the table above that

L−1

(
1

(s2 + 4)(s− 1)

)
=

1
5

(
− cos 2t− 1

2
sin 2t+ et

)

Example. Find L−1
(

s+1
s4−2s3+s2

)
.

Solution. Examining the denominator, we first notice that we can pull out a factor of s2:

s4 − 2s3 + s2 = s2(s2 − 2s+ 1)

and since s2 − 2s+ 1 factors as (s− 1)2, we have the rational function

s+ 1
s2(s− 1)2

=
A

s
+
B

s2
+

C

s− 1
+

D

(s− 1)2

The Heaviside cover up method applies to B and D, since the denominators of those terms contain the
highest powers of their respective linear factors. We have

B =
s+ 1
(s− 1)2

∣∣∣∣∣
s=0

= 1
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and

D =
s+ 1
s2

∣∣∣∣∣
s=1

= 2

Then
A

s
+

1
s2

+
C

s− 1
+

2
(s− 1)2

=
As(s− 1)2 + (s− 1)2 + Cs2(s− 1) + 2s2

s2(s− 1)2

and the numerator of this must be equal to s+ 1. Expanding the numerator, we have

As(s− 1)2 + (s− 1)2 + Cs2(s− 1) + 2s2 = (A+ C)s3 + (3− 2A− C)s2 + (A− 2)s+ 1 = s+ 1

Comparing terms, we see that (A+ C) = 0 and (A− 2) = 1, so that A = 3 and C = −3. Thus,

s+ 1
s2(s− 1)2

=
3
s

+
1
s2
− 3
s− 1

+
2

(s− 1)2

To get the inverse Laplace transform of the last term, note the identity L (eαtg(t)) = G(s − α) from the
table. We then write

L−1

(
s+ 1

s2(s− 1)2

)
= 3 + t− 3et + 2tet

since L (tet) = 1
(s−1)2 .

Example. Find L−1
(

(s+2)
s2+4s+5

)
.

Solution. Complete the square in the denominator to get

s2 + 4s+ 5 = (s+ 2)2 − 4 + 5 = (s+ 2)2 + 1

So we have the function
(s+ 2)

(s+ 2)2 + 1

Remember that L (eαtg(t)) = G(s − α). The above is just the Laplace transform for cosine, but shifted by
2. Indeed we have

L
(
e−2t cos t

)
=

(s+ 2)
(s+ 2)2 + 1

so

L−1

(
(s+ 2)

s2 + 4s+ 5

)
= e−2t cos t

C.1 Convolution and the Laplace Transform

Given two functions f(t) and g(t), we can form their convolution product, which is a new function of t
given by

(f ∗ g)(t) =
∫ t

0

f(τ)g(t− τ) dτ

This product is both associative, f ∗ (g ∗ h) = (f ∗ g) ∗ h; and commutative, f ∗ g = g ∗ f . The Laplace
transform takes convolution in t into ordinary multiplication in s:

L (f(t) ∗ g(t)) = F (s)G(s)

This can sometimes be useful in computing otherwise difficult convolutions.
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Example. Compute
tm ∗ tn

Solution. The integral

tm ∗ tn =
∫ t

0

τm (t− τ)n dτ

is somewhat difficult to compute directly, involving m integration by parts. Using the Laplace transform on
the other hand, we compute

L (tm ∗ tn) =
(

m!
sm+1

)(
n!
sn+1

)
=

m!n!
sm+n+2

=
m!n!

(m+ n+ 1)!

(
(m+ n+ 1)!
sm+n+2

)
so

tm ∗ tn = L−1

(
m!n!

(m+ n+ 1)!

( (m+ n+ 1)!
sm+n+2

))
=

m!n!
(m+ n+ 1)!

tm+n+1

C.2 Piecewise Functions & Delta Functions

The Laplace transform is often used in conjunction with piecewise functions which are functions of the
form

f(t) =


f1(t) t0 < t < t1
f2(t) t1 < t < t2
...

...

To express piecewise functions on one line, we typically use the unit step function defined as

u(t) =
{

0 t < 0
1 t > 0

We can easily create a “box” function which is equal to 1 on an interval [a, b] and equal to 0 elsewhere by
writing

f(t) = u(t− a)− u(t− b) =

 0 t < a
1 a < t < b
0 t > b

Think of the first term as a switch which “turns on” a 1 at time t = a, and the second term as a switch
which turns on a −1 at time t = b and so cancels out the first term.

Using such box functions, we can write

f(t) =


f1(t) t0 < t < t1
f2(t) t1 < t < t2
...

...

as
f(t) =

(
u(t− t0)− u(t− t1)

)
f1(t) +

(
u(t− t1)− u(t− t2)

)
f2(t) + · · ·

This is in a more useful form for taking the Laplace transform, for instance (see example in section 3.3)
When we take derivatives of piecewise functions, we often obtain spikes. The primordial jump is the

Dirac delta function δ(t) which is not really a function but has the following properties

δ(t) = 0, fort 6= 0,
∫ ∞
−∞

δ(t) dt =
∫ ε

−ε
δ(t) dt = 1
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so it has a finite amount of area under the “curve” at the point t = 0. More generally, δ(t) satisfies∫ ∞
−∞

δ(t− a)f(t) dt = f(a)

that is, if we integrate a function f(t) against a delta function living at t = a, we get the value of the function
at a.

The unit step function has a jump of height 1 at t = 0, and its derivative u′(t) has a spike of total area
1 at t = 0, namely

u′(t) = δ(t)

This is true more generally. Any time a piecewise function has a jump of height h (negative if the jump is
“down”), its generalized derivative10 will have a spike of area h given by a term hδ(t).

Example. Let f(t) be given by

f(t) =


0 t < 0
t 0 < t < 2
1 2 < t < 3
0 t > 3

Write f(t) in terms of step functions and find its generalized derivative f ′(t).

Solution. To write f(t) in terms of step functions, we think of creating boxes defined on [0, 2] and [2, 3].
Then

f(t) =
(
u(t)− u(t− 2)

)
t+
(
u(t− 2)− u(t− 3)

)
Note that f(t) has two jumps of height −1 (since we jump down as we go from left to right) at t = 2 and at
t = 3.

It’s generalized derivative is most easily thought of as follows. On the regions where f ′(t) is well-defined,
we have

f ′(t) =


0 t < 0
1 0 < t < 2
0 2 < t < 3
0 t > 3

But we also have to include the spikes at t = 2 and t = 3 of area -1. We obtain

f ′(t) =
(
u(t)− u(t− 2)

)
− δ(t− 2)− δ(t− 3)

D Matrices

Here we recall some facts about matrices. Recall that matrices can be multiplied together (AB makes sense
if the number of columns of A equals the number of rows of B), to get a muliplication which is associative:
A(BC) = (AB)C, but not neccessarily commutative: AB 6= BA in general. The unit element is the identity
matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 · · · 0 1

 ,
meaning that AI = IA = A for all matrices A for which either product makes sense.

10We call this the generalized derivative since the function doesn’t technically have a derivative in the usual sense. Any time
you differentiate something to get something with jumps or spikes, you’re using generalized derivatives.
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An n× n matrix A is invertible if and only if its determinant is nonzero: det A 6= 0. Recall that the
determinant of a 2× 2 matrix is given by

det A = det
∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

For a 3 × 3 matrix, you can evaluate its determinant by expanding along a row or column. For each entry
you have a term equal to that entry times the determinant of the 2 × 2 matrix obtained by deleting the
corresponding row and column. Then you add the three terms up, with an alternating sign (+1 starting in
the upper left, and changing each time you step right or down). For example,

det A = det

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = adet
∣∣∣∣ e f
h i

∣∣∣∣− bdet
∣∣∣∣ d f
g i

∣∣∣∣+ cdet
∣∣∣∣ d e
g h

∣∣∣∣
= a(ei− hf)− b(di− gf) + c(dh− ge)

So provided det A 6= 0, there is a matrix A−1 such that

AA−1 = A−1A = I

For 2× 2 matrices, there is a handy formula for the inverse of a matrix:[
a b
c d

]−1

=
1

det A

[
d −b
−c a

]
where the diagonal entries switch places, the off diagonal enteries get opposite signs, and we multiply the
whole thing by the scalar quantity 1/det A.

D.1 Eigenvalues & Eigenvectors

Given a matrix A, it frequently happens that we are interested in finding scalars λ and vectors v such that
the action of A on v is just the same as multiplying v by λ.

Av = λv

Solutions to this equation are called eigenvalues for the scalars λ, and eigenvectors for the vectors v.
The above equation can be rewritten as (A−λI)v = 0, and of course the only way we can get a nonzero

vector v satisfying this equation is if (A− λI) is not invertible (otherwise we’d have v = (A− λI)−10 = 0).
So we determine the possible eigenvalues from the eigenvalue equation

det (A− λI) = 0

Then, for a given eigenvalue λ, we can try to find an associated eigenvector by solving the eigenvector
equation

(A− λI)v = 0

In the case of a 2×2 matrix A, the eigenvalue equation has a special form which may be worth memorizing:

A =
[
a b
c d

]
=⇒ 0 = det (A− λI) = λ2 − tr A+ det A, tr A = (a+ d), det A = (ad− bc)

where tr A = a + d is called the trace of A, defined for any matrix as the sum of the diagonal entries. Be
careful to note the minus sign in front of the trace in the quadratic polynomial for λ.

Remark. The case of repeated eigenvalues is discussed in section 4.2 and will not be covered here.
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Example. Find the eigenvalues and corresponding eigenvectors for the matrix

A =
[

3 4
4 −3

]
Solution. The eigenvalue equation is

det (A−λI) = det
∣∣∣∣ 3− λ 4

4 −3− λ

∣∣∣∣ = (3−λ)(−3−λ)+16 = λ2−25 = λ2−tr A+det A = (λ+5)(λ−5) = 0

so we have eigenvalues λ = 5 and λ = −5.
For λ = 5, we want to solve

(A− 5I)v = 0 =⇒
[
−2 4
4 −8

] [
a
b

]
=
[

0
0

]
which gives the equation −2a+ 4b = 0 (the second equation 4a− 8b = 0 is equivalent to the first as it must
be to get a nonzero solution). We can choose any convenient value for a and b which solves this equation,
say a = 2, b = 1. So

λ = 5, v =
[

2
1

]
is an eigenvalue, eigenvector pair.

Similarly, for λ = −5 we solve

(A− (−5)I)v = 0 =⇒
[

8 4
4 2

] [
a
b

]
=
[

0
0

]
So we can take a = 1, b = −2, for instance and get

λ = −5, v =
[

1
−2

]
for our second pair.

D.2 Matrix Exponentials

Another important quantity associated to a matrix A is the matrix exponential

etA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · · =

∞∑
n=0

tn

n!
An

obtained by applying the taylor series ex =
∑
n
xn

n! to the matrix quantity tA. The result11 is a matrix which
is a function of t, and is important in the theory of homogeneous systems of equations (see section 4.3). It
is a solution to the differential equation characterizing fundamental matrices for A (see section 4.3), and is
the unique one satisfying the additional initial condition(

etA
)′

= AetA, e0A = I

We can verify this by examining the series:

(
etA
)′

=
d

dt

(
I + tA+

t2

2!
+ · · ·

)
= A+

2t
2!
A2 +

3t
3!
A3 = A

(
I +

t

1!
A+

t2

2!
A2 + · · ·

)
e0A = I + 0A+ 0A2 + · · · = I

11It can be shown that the resulting series of matrices converges for all t
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In some cases we can evaluate the series directly, for instance when a matrix is diagonal (for which entries
are zero except along the diagonal), or strictly upper/lower triangular (for which the only nonzero entries
are either above the main diagonal or below it).

In other cases, we can compute the matrix exponential using fundamental matrices, which is discussed
in section 4.3.

Example. Compute etA and etB, where

A =
[

1 0
0 2

]
, B =

[
0 1
0 0

]
Solution. A is a diagonal matrix, as defined above. As we compute its successive powers, we see that we end
up just taking the corresponding powers of the entries along the diagonal

A2 =
[

12 0
0 22

]
, A3 =

[
13 0
0 23

]
, An =

[
1n 0
0 2n

]
, etc.

Then for the exponential series, we obtain

etA =
∞∑
n=0

tn

n!
An =

∞∑
n=0

tn

n!

[
1n 0
0 2n

]
=

[ ∑
n

(1t)n

n! 0
0

∑
n

(2t)n

n!

]
=
[
e1t 0
0 e2t

]
B is a strictly upper triangular matrix. Such matrices have the property (called nilpotent) that Bn = 0

for all sufficiently large n. In this case,

B2 =
[

0 0
0 0

]
= 0, B3 = BB2 = 0, . . . , Bn = 0, for n > 1

So in the exponential series for B, we have

etB = I + tB +
t2

2!
B2 + · · · = I + tB =

[
1 t
0 1

]

Finally, we might expect the usual rule for multiplication of exponentials to hold for matrices, that is,
eA+B = eAeB . This is not true in general, however. For this to hold, we need A and B to commute;
that is,

eA+B = eAeB only if AB = BA

The reason for this can be seen by examining the series:

eA+B = I + (A+B) +
1
2

(A+B)2 + · · · = I + (A+B) +
1
2
(
A2 +B2 +AB +BA

)
+ · · ·

whereas

eAeB =
(
I +A+

A2

2
+ · · ·

)(
I +B +

B2

2
+ · · ·

)
= I + (A+B) +

1
2
(
A2 +B2 + 2AB

)
+ · · ·

so the two series are only equal (up to second order at least, but a similar thing happens for all orders) if
AB +BA = 2AB ⇐⇒ AB = BA.

As a useful corollary to this, note that (
etA
)−1

= e−tA

that is, the inverse matrix to etA is just the matrix exponential itself, evaluated at −t. This follows from
using the multiplication rule, which applies here since A clearly commutes with itself (AA = A2 = AA), so

etAe−tA = et(A−A) = et0 = I

which is the defining property for the inverse matrix
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Example. Compute etA where

A =
[

2 1
0 2

]
=
[

2 0
0 2

]
︸ ︷︷ ︸

B

+
[

0 1
0 0

]
︸ ︷︷ ︸

C

Solution. A is the sum of a diagonal matrix B and a strictly upper triangular matrix C. Using the techniques
from the previous example, we compute

etB =
[
e2t 0
0 e2t

]
, etC =

[
1 t
0 1

]
In order to use the multiplication rule, we need to check commutativity:

BC =
[

2 0
0 2

] [
0 1
0 0

]
=
[

0 2
0 0

]
CB =

[
0 1
0 0

] [
2 0
0 2

]
=
[

0 2
0 0

]
Since BC = CB, we can compute

etA = et(B+C) = etBetC =
[
e2t 0
0 e2t

] [
1 t
0 1

]
=
[
e2t te2t

0 e2t

]
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amplitude response, 5
autonomous equation, 8

cartesian form, 34
change of variables, 6

example, 6
characteristic polynomial, 11
companion matrix, 21
complete case, 23
complex conjugate, 36
complex number, 34
constant coefficient, 2
convolution, 19

example, 19, 20, 43
convolution, 43
critical point, 31
critical point, 8

defective case, 23
delta function, 19
delta function, 44
determinant, 45
diagonal matrix, 47
differential operator, 2

eigenvalue, 22
eigenvalue, 46
eigenvalue equation, 46
eigenvector, 22
eigenvector, 46
eigenvector equation, 46
Euler’s formula, 34
Euler’s method

example, 10
Euler’s method, 10
even function, 38
exponential response

example, 13
exponential response formula, 12

first order equation
example, 4–6

Fourier series
example, 16, 39

Fourier series, 38
fundamental matrix, 47

example, 26
fundamental matrix, 25

general solution, 11

example, 12, 23–25
system, 21

general solution, 2
generalized derivative, 45

example, 45

Heaviside cover up, 41
Heaviside coverup, 17
homogeneous equation, 11

example, 12
homogeneous equation, 2
homogeneous solution, 11

system, 3, 21
homogeneous solution, 2
homogeneous solutions

system, 22
homogeneous system

example, 23–25
homogeneous system, 3

identity matrix, 45
imaginarypart, 34
inhomogeneous system of equations, 27
initial condition, 3
initial value problem, 10

example, 17–20, 26
system, 21

initial value problem, 3
input, 2
integrating factor

example, 5
integrating factor, 5
inverse of a 2× 2 matrix, 46
invertible matrix, 45
isoclines

example, 7
isoclines, 7

Jacobian matrix, 31
jump, 45

Laplace transform, 17
example, 17, 18, 40–43

linear equation, 10
example, 5

linear equation, 2
linear system

system, 20
linear system, 3
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matrix, 3
matrix exponential, 26

example, 48, 49
matrix exponential, 47

nodal source
example, 31

nonlinear system, 31
example, 32

odd function, 38
order, 2
oscillatory input

example, 5, 13

particular solution, 11, 12
example, 13–16, 28
system, 3, 21

particular solution, 2
period, 38
periodic, 15
periodic extension

example, 39
periodic function, 38
periodic solution, 12
phase diagram

example, 29–32
phase portrait

example, 9
phase portrait, 8
phase shift, 5
piecewise function, 17, 18

example, 18, 45
piecewise functions, 44
polar form, 34
pseudofrequency, 12
pseudofrequency, 12
pseudoperiod, 12

real part, 34
resonance, 16
response, 2
rest initial conditions, 19
reverse Euler formula, 35

saddle, 29
example, 29

semistable
critical point, 9

seperable equation
example, 4

seperable equation, 4
spike, 44

spiral source
example, 30

stability
example, 9

stable, 29
critical point, 9

step size, 10
system of equations, 3

trace, 46
transfer function, 19
triangular matrix, 47

undetermined coefficients
example, 14, 15

undetermined coefficients, 14
unit step function, 44
unstable

critical point, 9

variation of parameters
example, 28

variation of parameter, 27
vector, 3

weight function
example, 19, 20

weight function, 19
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