
ROW REDUCTION AND ITS MANY USES

CHRIS KOTTKE

These notes will cover the use of row reduction on matrices and its many appli-
cations, including solving linear systems, inverting linear operators, and computing
the rank, nullspace and range of linear transformations.

1. Linear systems of equations

We begin with linear systems of equations. A general system of m equations in
n unknowns x1, . . . , xn has the form

(1)

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b1

...
...

am1x1 + · · ·+ amnxn = bm

where aij and bk are valued in a field F, either F = R or F = C.
In more compact form, this is equivalent to the equation

Ax = b

where

A =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 , b = (b1, . . . , bm) ∈ Fm, x = (x1, . . . , xn) ∈ Fn.

Finally, observe that the system (1) is completely encoded by the augmented matrix

(2) [A | b] =

 a11 · · · a1n b1
...

. . .
...

...
am1 · · · amn bm

 ,

where each row of the matrix corresponds to one of the equations in (1).

2. Row reduction and echelon form

The strategy to solving a system of equations such as (1) is to change it, via a
series of “moves” which don’t alter the solution, to a simpler system of equations
where the solution may be read off easily. The allowed moves are as follows:

(1) Multiply an equation on both sides by a nonzero constant a ∈ F.
(2) Exchange two rows.
(3) Add a scalar multiple of one equation to another.
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It is easy to see that each of these is reversible by moves of the same type (multiply
the equation by 1/a, exchange the same two rows again, subtract the scalar multiple
of the one equation from the other, respectively), and that after any such move,
any solution to the new equation is a solution to the old equation and vice versa.
In terms of the augmented matrix [A | b], these moves correspond to so-called “row
operations.”

Definition 1. An elementary row operation (or just row operation for short) is an
operation transforming a matrix to another matrix of the same size, by one of the
following three methods:

(1) Multiply row i by a ∈ F \ {0} .
(2) Exchange rows i and j.
(3) Add a times row i to row j for some a ∈ F.

Example 2. The sequence of matrices[
1 2 3 4
5 6 7 8

]
R2−2R1−→

[
1 2 3 4
3 2 1 0

]
R1↔R2−→

[
3 2 1 0
1 2 3 4

]
3R1−→

[
9 6 3 0
1 2 3 4

]
is obtained by succesive row operations — first adding −2 times row 1 to row 2,
then exchanging rows 1 and 2, and finally multiplying row 1 by 3.

Suppose the matrix in question is [A | b], representing the system (1). Using
row operations, how should we simplify it so that the solution may be more easily
determined? The next definition gives an answer.

Definition 3. A matrix is said to be in row-echelon form (or just echelon form for
short), if

(1) All rows consisting entirely of zeroes are at the bottom,
(2) The first nonzero entry in each row (called the leading entry or pivot) is

equal to 1, and
(3) The pivot in each row lies in a column which is strictly to the right of the

pivot in the row above it.

(The third condition means that the pivots must occur in a kind of “descending
staircase” pattern from the upper left to the lower right.) The matrix is further
said to be in reduced row-echelon form if in addition,

(4) Each pivot is the only nonzero entry in its column.

This definition applies generally to any matrix, not just augmented matrices rep-
resenting systems of equations.

Example 4. The matrix 
1 2 4 7 4

0 0 1 9 6

0 0 0 1 5
0 0 0 0 0


is in echelon form but not reduced echelon form and boxes have been drawn around
the pivot entries. The matrix 1 2 4

1 3 9
0 0 1
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is in neither echelon nor reduced echelon form. The matrix 1 2 0 4

0 0 1 6
0 0 0 0


is in reduced echelon form.

In the process of row reduction, one takes a matrix A and alters it by successive
row operations to get a matrix Ae in echelon or Are in reduced echelon form,
depending on the application. We will see examples in the next sections.

Note that the echelon form of a matrix obtained by row reduction is not unique,
since multiples of the lower rows may always be added to upper ones. However,
the reduced echelon form, Are of any matrix is in fact unique, since it encodes a
specific linear relationship between the columns of the original matrix, as we shall
see.

3. Solving linear systems

To solve a particular linear system by row reduction, start with its augmented
matrix and, starting from upper left to lower right, perform succesive row operations
to get a 1 in each pivot position and then kill off the entries below it, resulting in
a matrix in echelon form.

When a linear system has been reduced to echelon form (or optionally even
further to reduced echelon form), the solution (if it exists) may be read off fairly
immediately by back subsitution.

For example, if we start with the linear system represented by the augmented
matrix  2 4 7 10

1 2 3 4
1 2 3 6


we get an echelon form by 2 4 7 10

1 2 3 4
1 2 3 6

 R1↔R2−→

 1 2 3 4
2 4 7 10
1 2 3 6

 R2−2R1−→

 1 2 3 4
0 0 1 2
1 2 3 6


R3−R1−→

 1 2 3 4
0 0 1 2
0 0 0 2

 1
2R3

−→

 1 2 3 4
0 0 1 2
0 0 0 1


This is now equivalent to the system

x1 + 2x2 + 3x3 = 4

x3 = 2

0 = 1

which has no solution because of the last equation.
If on the other hand, the echelon form matrix had been 1 2 3 4

0 0 1 2
0 0 0 0
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corresponding to the system

x1 + 2x2 + 3x3 = 4

x3 = 2

0 = 0

then we would conclude that x3 = 2, then back substitute it into the upper equation
to get

x1 + 2x2 = −2.

Note that the value of x2 is not determined — this corresponds to the fact that
there is no pivot in the second column of the echelon matrix. Indeed, x2 is a so-
called free variable. This means that there are solutions to the equation having any
value for x2 ∈ F, so the solution is not unique. In any case, once we have chosen a
value for x2, the value for x1 is determined to be

x1 = −2− 2x2.

Alternatively, we could have gone further with the row reduction to get the
reduced echelon matrix: 1 2 3 4

0 0 1 2
0 0 0 0

 R1−3R2−→

 1 2 0 −2
0 0 1 2
0 0 0 0


from which we read off the same solution:

x1 = −2− 2x2

x3 = 2.

The extra work of getting to the reduced echelon form is essentially the same as
the work involved in the back substitution step. We summarize our observations in
the following.

Proposition 5. Consider the equation Ax = b.

(1) If after row reduction, an echelon form for the augmented matrix [A | b] has a
row of the form [

0 · · · 0 b
]
, b 6= 0

then the equation has no solution.
(2) Otherwise solutions may be found by iteratively solving for the variables from

the bottom up and substituting these into the upper equations.
(3) Variables whose columns have no pivot entries in the echelon matrix are free,

and solutions exist with any values chosen for these variables. If any free vari-
ables exist therefore, the solution is not unique.

An important theoretical consequence of the above is

Theorem 6. Let A ∈ Mat(m,n,F), and let Ae be an echelon form matrix obtained
from A by row operations.

(1) A solution to Ax = b exists for all b ∈ Fm if and only if Ae has pivots in every
row.

(2) Solutions to Ax = b are unique if and only if Ae has pivots in every column.
(3) A is invertible if and only if Ae has pivots in every row and column, or equiv-

alently, if the reduced echelon form Are is the identity matrix.
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Note that the theorem refers to the echelon form for A, rather than for the aug-
mented matrix [A | b]. The point is that Ae contains information about existence
and uniqueness of Ax = b for all b ∈ Fm.

Proof. If Ae fails to have a pivot in row i, this means that row i consists entirely
of zeroes. However in this case we can find b ∈ Fm such that after row reduction,
an echelon form for the augmented matrix [A | b] has a row of the form[

0 · · · 0 b′
]
, b′ 6= 0,

hence Ax = b has no solution. Conversely if Ae has pivots in all rows, the row
reduction of [A | b] will never have such a row, and Ax = b will always have at least
one solution.

For the second claim, note that having a pivot in every column means there are
no free variables, and every variable is completely determined, hence if a solution
exists it is unique.

Finally, invertibility of A is equivalent to Ax = b having a unique solution for
every b, hence equivalent to Ae having pivots in every row and column. The only
way this is possible is if A is a square matrix to begin with, and Ae has pivots at
each entry along the main diagonal. Clearing out the entries above the pivots, it
follows that the reduced echelon form Are for A is the identity matrix. �

4. Elementary matrices

Next we discuss another way to view row reduction, which will lead us to some
other applications.

Proposition 7. Performing a row operation on a matrix is equivalent to multiply-
ing it on the left by an invertible matrix.

Proof. We exibit the matrices associated to each type of row operation, leaving
it as a simple exercise for the reader to verify that multiplication by the matrix
corresponds to the given operation.

To multiply row i by a ∈ F \ {0}, multiply by the matrix

1
. . .

1
a

1
. . .

1


Here a is in the (i, i) place, and the matrix is otherwise like the identity matrix,
with ones along the diagonal and zeroes elsewhere.
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To exchange rows i and j, multiply by the matrix

1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1


Here the matrix is like the identity, except with 0 in the (i, i) and (j, j) places, and
1 in the (i, j) and (j, i) places.

To add a times row i to row j, multiply by the matrix

1
. . .

1
. . .

a 1
. . .

1


Here the matrix is like the identity, but with a in the (j, i) place.

These are invertible matrices, with inverses corresponding to the inverse row
operations. �

Definition 8. The matrices corresponding to the elementary row operations are
called elementary matrices.

This gives an alternate way to see that row operations don’t change the solution
to a linear equation. Indeed, given the linear equation

(3) Ax = b,

performing a sequence of row operations corresponding to elementary matrices
E1, . . . , EN is equivalent to multiplying both sides by the sequence of matrices:

ENEN−1 · · ·E1Ax = ENEN−1 · · ·E1b

which has the same solutions as (3) since the Ei are invertible.

5. Finding the inverse of a matrix

The concept of elementary matrices leads to a method for finding the inverse of
a square matrix, if it exists.
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Proposition 9. A matrix A is invertible if and only if it may be row reduced to
the identity matrix. If E1, . . . , EN are the elementary matrices corresponding to the
row operations which reduce A to I, then

(4) A−1 = EN · · ·E1.

Proof. The first claim was proved as part of Theorem 6.
Suppose now that A is reduced to the identity by a sequence row operations,

corresponding to elementary matrices E1, . . . , EN . By the previous result, this
means that

ENEN−1 · · ·E1A = I

Thus the product EN · · ·E1 is a left inverse for A; since it is invertible it is also a
right inverse, so (4) follows. �

Corollary 10. A matrix A is invertible if and only if it can be written as the
product of elementary matrices.

Proof. The product E = E1 · · ·EN of elementary matrices is always invertible,
since the elementary matrices themselves are, with inverse E−1 = E−1N · · ·E

−1
1 .

Conversely, if A is invertible, then A−1 = EN · · ·E1 for some elementary matrices
by the previous result, and it follows that

A = E−11 · · ·E
−1
N .

Since the inverses of elementary matrices are also elementary matrices, the claim
follows. �

So to compute the inverse of a matrix, we can row reduce it to the identity,
keeping track of each step, and then compute the product of the corresponding
elementary matrices. However this is quite a bit of work, and there is a clever
observation that leads to a much simpler method. Indeed, note that

A−1 = EN · · ·E1 = EN · · ·E1 I

and the latter is equivalent to the matrix obtained by performing the same sequence
of row operations on the identity matrix as we did on A.

Thus we can simply perform row reduction on A and, at the same time, do the
same sequence of row operations on I. Once A has been transformed into I, I
will have been transformed into A−1. The most efficient way to do this is to just
perform row reduction on the augmented matrix

[A | I] =

 a11 · · · a1n 1
...

. . .
...

. . .

an1 · · · ann 1

 .

Its reduced echelon form will be [EN · · ·E1A |EN · · ·E1I] = [I | A−1]. Schemati-
cally,

[A | I]
row ops−→ [I | A−1].

Example 11. To compute the inverse of the matrix 1 2 2
−1 1 1

2 4 1
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by row reduction, we compute 1 2 2 1 0 0
−1 1 1 0 1 0

2 4 8 0 0 1

 −→
 1 2 2 1 0 0

0 3 3 1 1 0
0 0 4 −2 0 1

 −→
 1 2 2 1 0 0

0 1 1 1/3 1/3 0
0 0 1 −1/2 0 1/4


−→

 1 0 0 1/3 −2/3 0
0 1 1 1/3 1/3 0
0 0 1 −1/2 0 1/4

 −→
 1 0 0 1/3 −2/3 0

0 1 0 5/6 1/3 −1/4
0 0 1 −1/2 0 1/4


Thus the inverse is  1/3 −2/3 0

5/6 1/3 −1/4
−1/2 0 1/4


as can be verified by matrix multiplication.

6. Spanning and independence

We can use the theory of linear equations to answer questions about spanning
and linear independence of vectors in Fm (and likewise in an abstract vector space
V , using a choice of basis to identify V with Fm). Indeed, suppose B = {v1, . . . , vn}
is a set of vectors in Fm, and consider the equation

(5) x1v1 + x2v2 + · · ·xnvn = b, xi ∈ F, b ∈ Fm

Recall that:

(1) B spans Fm if and only if (5) has a solution for every b ∈ Fm.
(2) B is linearly independent if and only if (5) has unique solutions, in particular

if it has the unique solution x1 = x2 = · · · = xn = 0 for b = 0 ∈ Fm.

If we let

(6) A =

 | | · · · |
v1 v2 · · · vn
| | · · · |


be the m × n matrix whose columns are given by the components of the vectors
v1, . . . , vn, then (5) is just the equation Ax = b.

We have thus expressed the properties of spanning and linear independence for
B in terms of existence and uniqueness for systems of equations with matrix A, so
obtaining the following result as an immediate consequence of Theorem 6.

Proposition 12. Let B = {v1, . . . , vn} ⊂ Fm, and let A ∈ Mat(m,n,F) be the
matrix (6) whose kth column is the components of the vk for k = 1, . . . , n. Then

(1) B spans Fm if and only if an echelon form for A has pivots in all rows.
(2) B is linearly independent if and only if an echelon form for A has pivots in all

columns.
(3) B is a basis if and only if m = n and an echelon form for A has pivots in every

row and column (equivalently, the reduced echelon form for A is the identity
matrix)
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Example 13. Consider the set {(1, 1, 1), (1, 2, 3), (1, 4, 7)} of vectors in R3. To
determine if they are linearly independent, and hence a basis, we compute

A =

1 1 1
1 2 4
1 3 7

 −→
1 1 1

0 1 3
0 2 6

 −→
 1 1 1

0 1 3
0 0 0


Since an echelon form for A has neither pivots in all rows nor all columns, we
conclude that the set is linearly dependent, and does not span R3.

In fact in the previous example we can go a bit further. The reduced echelon
form for A is

Are =

1 0 −2
0 1 3
0 0 0

 =

 | | |
u1 u2 u3

| | |


and from this it is easy to see that

u3 = −2u1 + 3u2,

where u1, u2 and u3 are the columns of Are. You can check that the same relation
holds between the columns of the original matrix, i.e. our vectors of interest:

(1, 4, 7) = −2(1, 1, 1) + 3(1, 2, 3)

Similarly, it is immediate that u1 and u2 are independent, and so are (1, 1, 1) and
(1, 2, 3).

What we have noticed is a general phenomenon:

Proposition 14. Row operations preserve linear relations between columns. That
is, if v1, . . . , vn are the columns of a matrix A, and u1, . . . , un are columns of the
matrix A′ which is the result of applying row operations to A, then

a1v1 + a2v2 + · · ·+ anvn = 0 ⇐⇒ a1u1 + a2u2 + · · · anun = 0

Proof. The fact that A′ is the result of applying row operations to A means that
A′ = EA where E = EN · · ·E1 is an invertible matrix. So the statement is equiv-
alent to saying that linear relations between columns are left invariant under left
multiplication by invertible matrices.

Indeed, one consequence of matrix multiplication is that if A′ = EA, then the
columns of A′ are given by E times the columns of A:

uk = Evk, for all k = 1, . . . , n.

It follows that

a1v1 + · · ·+ anvn = 0 ⇐⇒ E(a1v1 + · · ·+ anvn)

= a1Ev1 + · · ·+ anEvn

= a1u1 + · · ·+ anun = 0. �
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7. Computing nullspaces and ranges

The previous result leads to the final application of row reduction: a method
for computing the nullspace and range of a matrix A ∈ Mat(m,n,F), viewed as a
linear transformation

A : Fn −→ Fm.

We begin with the range of A. First observe that if we denote the columns of A
by v1, . . . , vn ∈ Fm, as in (6), then

Ran(A) = span(v1, . . . , vn) ⊆ Fm.

Indeed, by definition Ran(A) consists of those vectors b ∈ Fm such that b = Ax for
some x ∈ Fn, and from the properties of matrix multiplication,|b

|

 = Ax = x1

 |v1
|

+ x2

 |v2
|

+ · · ·+ xn

 |vn
|


Thus b ∈ Ran(A) lies in the span of {v1, . . . , vn} and vice versa. For this reason
the range of A is sometimes referred to as the column space of A.

We would like to extract from this spanning set an actual basis for Ran(A),
which we may do as follows.

Proposition 15. A basis for Ran(A) is given by those columns of A which corre-
spond to pivot columns in Ae. In other words, if we denote the columns of A by
{v1, . . . , vn} and the columns of the echelon matrix Ae by {u1, . . . , un}, then vk is
a basis vector for Ran(A) if uk contains a pivot in Ae.

In particular, the rank of A is given by the number of pivots in Ae.

It is particularly important that we take the columns of the original matrix, and
not the echelon matrix. While row operations/left multiplication by elementary
matrices preserves linear relations between columns, they certainly do not preserve
the span of the columns.

Proof. The pivot columns of Ae are the same as the pivot columns of Are, so
consider the reduced echelon form

Are =



1 ∗ · · · 0 ∗ · · · 0 · · · ∗
0 0 · · · 1 ∗ · · · 0 · · · ∗
0 0 · · · 0 0 · · · 1 · · · ∗

0 0 · · · 0 0 · · · 0 · · ·
...

...
...

... · · · ∗
...

...
... · · · 0

...
...

... · · ·
...

0 · · · · · · 0 · · · · · · 0 · · · 0


By inspection, the columns containing pivot entries — the pivot columns — are
linearly independent. In addition, any column not containing pivots can be written
as a linear combination of the pivot columns (in fact it can be written just as linear
combinations of the pivot columns appearing to the left of the column in question,
but this is not particularly important here).
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By Proposition 14 the same is therefore true of the original columns of A: those
which become pivot columns in Are are linearly independent, and the others may
be written in terms of them, so they form a basis for span(v1, . . . , vn) = Ran(A),
as claimed. �

Now on to Null(A). The process of finding a basis for Null(A) is really just
the process of solving Ax = 0, since by definition Null(A) = {x ∈ Fn : Ax = 0} .
Since the right hand side is 0 here, writing down the augmented matrix [A | 0] is
superfluous and we may just perform row reduction on A itself.

Once an echelon form for A is obtained, say for example

Ae =

 1 −2 3 4
0 0 1 2
0 0 0 0

 ,

we translate it back into the linear system

x1 − 2x2 + 3x3 + 4x4 = 0

x3 + 2x4 = 0

0 = 0

Here the variables x2 and x4 are free since they come from non-pivot columns.
The trick is now to write down the equation for (x1, x2, x3, x4) in terms of the free
variables, letting these free variables act as arbitrary coefficients on the right hand
side. For example, we have

x1 = 2x2 − 3x3 − 4x4

x2 = a2 free

x3 = −2x4

x4 = a4 free

=⇒


x1 = 2a2 + 2a4

x2 = a2

x3 = −2a4

x4 = a4

=⇒


x1

x2

x3

x4

 = a2


2
1
0
0

+a4


2
0
−2

1


We deduce that {(2, 1, 0, 0), (2, 0,−2, 1)} spans Null(A), and it is also a basis since
it is linearly independent. Note that the independence is a consequence of the fact
that each vector has a unique coefficient which is 1 where the other vector has a 0.
This property in turn comes from the ‘free’ equations x2 = a2 and x4 = a4.

Proposition 16. To determine a basis for Null(A), the equation Ax = 0 may be
solved by row-reduction. If the general solution to this equation is written using the
free variables as coefficients, then the vectors appearing in the linear combination
for the solution form a basis for Null(A).

In particular, the dimension of Null(A) is equal to the number of non-pivot
columns of Ae.

Proof. It is clear that the vectors so obtained span Null(A), since by definition any
solution to Ax = 0 may be written as a linear combination of them. That they are
linearly independent follows from the equations xj = aj for the free variables, as in
the example above. �

Note that the rank-nullity theorem is a consequence of the two previous results,
since the dimension of the domain of A is the number of columns, the dimension of
the nullspace is the number of non-pivot columns, and the dimension of the range
is the number of pivot columns.
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Example 17. Consider

A =

 1 −2 3 4
1 −2 4 6
1 −2 2 2


An echelon form for A is the matrix from the previous example,

Ae =

 1 −2 3 4
0 0 1 2
0 0 0 0


Since columns 1 and 3 contain pivots, it follows that {(1, 1, 1), (3, 4, 2)} is a basis
for Ran(A), and by the previous computation, {(2, 1, 0, 0), (2, 0,−2, 1)} is a basis
for Null(A). The rank of A is 2.

8. Exercises

Some of the following exercies were taken from Sergei Treil’s book Linear Algebra
Done Wrong.

Problem 1. For what b ∈ R does1 2 2
2 4 6
1 2 3

x =

1
4
b


have a solution? Write the general solution for such b.

Problem 2. Find the inverse of the matrix1 2 1
3 7 3
2 3 4


Problem 3. Determine whether or not the set

{(1, 0, 1, 0), (1, 1, 0, 0), (0, 1, 0, 1), (0, 0, 1, 1)}
is a basis for R4.

Problem 4. Do the polynomials x3 + 2x, x2 + x + 1, x3 + 5 and x3 + 3x− 5 span
P3(R)?

Problem 5. Compute the rank and find bases for the nullspace and range of the
matrix 

1 2 3 1 1
1 4 0 1 2
0 2 −3 0 1
1 0 0 0 0
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