
A short story of measure theory

September 16, 2016

1 Introduction

The Riemann integral is founded on the following idea: divide up the domain of a function f : [a, b] −→ R
into subintervals, estimate f from above and below on each interval, and approximate the integral of f
by the upper and lower sums—the summation of the widths of the intervals times the upper and lower
estimates on each. The limit over partitions of [a, b] of these two approximations, should they exist and
agree, is declared to be the integral of f .

Sadly, this definition of the integral lacks some desirable properties. In particular, the space of
absolutely integrable functions is not complete—a sequence of functions which is Cauchy in the norm

‖f‖1 =
∫ b
a |f(x)| dx need not converge to a Riemann-integrable function.

As a remedy to such deficiencies, the Lebesgue integral is founded on a different idea: namely,
divide up the range of f into subintervals, and approximate the integral by the summation of the lower
endpoints times the volume, or measure, of the interval’s preimage under f . To make this idea precise,
we require

(1) a notion of measure for appropriate sets,

(2) a class of “measurable” functions which can be so approximated, and

(3) a definition of the integral of a measurable function on a measurable set.

As with most ideas in math, it is possible to develop this in a fairly general setting. In this note,
we outline this development in the general setting, with particular mention of the Lebesgue measure on
Rn. As this is a “story”, not a course in measure theory, you are meant to provide your own proofs (or
look them up). Most are straightforward, if tedious. Folland’s Real Analysis is the treatment we mostly
follow here.

2 Measures

It is an unfortunate fact that we often cannot assign a coherent measure to all subsets of a given space.
We can, however, require some nice conditions of those sets to be ‘measured’.

A collection A ⊆ P(X) of subsets of X is an algebra if it contains ∅ and is closed under pairwise
(hence finite) union and complements:

A1, A2 ∈ A =⇒ A1 ∪A2, A
c
1 ∈ A.

A is a σ-algebra if in addition it is closed under countable unions:

{An : n ∈ N} ⊂ A =⇒
⋃
n

An ∈ A.
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It follows that A is likewise closed under countable intersections.
Often we start with a collection of sets of interest, and take the smallest σ-algebra generated by these.

If X is a topological space, the Borel σ-algebra, BX , is the one generated by all open (equivalently
closed) sets.

Proposition 2.1. The Borel σ-algebra on R is equivalently generated by any of the following collections
of subsets:

{(a, b) : a, b ∈ R} {[a, b) : a, b ∈ R} {(a, b] : a, b ∈ R}
{[a, b] : a, b ∈ R} {(a,∞) : a ∈ R} {[a,∞) : a ∈ R}

{(−∞, a) : a ∈ R} {(−∞, a] : a ∈ R}

In measure theory it is often useful to work with the extended real numbers R = R ∪ {±∞},
a 2-point compactification of R with the obvious topology (i.e., (a,∞] and [−∞, b) are open for all
a, b ∈ R) and total order. Then BR is generated by the collection {[a,∞]}, for instance.

Let A be a σ-algebra on a set X. A measure on (X,A) is a function µ : A −→ [0,∞] satisfying

(M1) µ(∅) = 0, and

(M2) (Countable additivity) if {An : n ∈ N} are mutually disjoint then µ
(⋃∞

n=1An

)
=
∑∞

n=1 µ(An).

The properties below follow easily from the two defining ones (M1) and (M2).

Proposition 2.2. Let µ be a measure on (X,A). Then

(M3) (Monotonicity) A ⊂ B =⇒ µ(A) ≤ µ(B),

(M4) (Countable sub-additivity) µ
(⋃∞

n=1An

)
≤
∑∞

n=1An,

(M5) (Continuity from below) A1 ⊂ A2 ⊂ · · · =⇒ µ
(⋃

nAn

)
= limn µ(An),

(M6) (Continuity from above) A1 ⊃ A2 ⊃ · · · =⇒ µ
(⋂

nAn

)
= limn µ(An).

We defer the existence and construction of useful measures until §6.

3 Measurable functions

Let (X,A) and (Y,B) be spaces with σ-algebras (aka “measurable spaces”). A function f : X −→ Y is
measurable if

B ∈ B =⇒ f−1(B) ∈ A.

In particular, a (possibly extended) real-valued function f : X −→ R = (R,BR) is measurable if and

only if f−1([a,∞]) ∈ A for all a ∈ R. The set of measurable R-valued functions has particularly nice
limit properties:

Proposition 3.1. Let (fn) be a sequence of R-valued measurable functions on (X,A). Then

g1(x) = sup
n
fn(x), g2(x) = inf

n
fn(x),

g3(x) = lim sup
n

fn(x), and g4(x) = lim inf
n

fn(x)

are all measurable. In particular if the sequence converges pointwise then limn fn is measurable.
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A step function is a measurable function given by a finite linear combination

φ =
∑

akχAk
, Ak ∈ A, ak ∈ C,

where χA denotes the indicator function

χA(x) =

{
1 x ∈ A,
0 x /∈ A.

(Note that the ak are not allowed to be infinite, and that by requiring the Ak to be disjoint, we can
arrange for a unique representation of φ.) For a step function, the definition of the integral is almost
obvious; however we run into issues whenever some of the Ak have infinite measure.

Initially then, we restrict attention to the positive measurable functions:

L+ = L+(X) = {f : X −→ [0,∞] measurable} .

Proposition 3.2. f ∈ L+ if and only if there is an increasing sequence of positive step functions (φn)
such that φn → f pointwise.

4 The integral

For a positive step function φ =
∑
akχAk

, ak ∈ [0,∞), the integral is defined by∫
φdµ =

∑
akµ(Ak), (1)

with the convention that 0 · ∞ = 0. Note that
∫
φdµ may have the value ∞.

Proposition 4.1. The integral (on step functions) has the following properties:

(a)
∫

(φ+ ψ) dµ =
∫
φdµ+

∫
ψ dµ.

(b)
∫
cφ dµ = c

∫
φdµ, c ∈ [0,∞).

(c) If φ ≤ ψ, then
∫
φdµ ≤

∫
ψ dµ.

(d) A 7−→
∫
A φdµ =

∑
akµ(A ∩Ak) is a measure on A.

For a positive measurable function f ∈ L+, the integral is defined by estimating from below by step
functions: ∫

f dµ := sup

{∫
φdµ : 0 ≤ φ ≤ f, φ step

}
This extends (1) when f is a step function, since the supremum is then achieved by φ = f .

Theorem 4.2 (Monotone Convergence Theorem). Let (fn) be a sequence in L+ such that fn ≤ fn+1

for all n and fn → f ∈ L+. Then ∫
f dµ = lim

n

∫
fn dµ.
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Instead of taking the supremum over all step functions bounded by f ∈ L+, we can thus represent
each f by a pointwise increasing limit of step functions by Proposition 3.2 and exchange limits and
integral signs by Theorem 4.2.

Corollary 4.3. Proposition 4.1 extends to the integral on L+; in fact the latter is countably additive:∫ ∑∞
n=1 fn dµ =

∑∞
n=1

∫
fn dµ.

Note that, without the monotone increasing hypothesis, Theorem 4.2 may fail. For instance, fn =
χ[n,n+1] and gn = nχ[0,1/n] are two sequences of step functions on R converging pointwise to 0, but for

which
∫
fn dx =

∫
gn dx = 1 for all n. A general inequality holds however:

Corollary 4.4 (Fatou’s Lemma). Let (fn) be any sequence in L+. Then∫
lim inf

n
fn dµ ≤ lim inf

n

∫
fn dµ

We are tempted to suppose that 0 ≤ f ,
∫
f dµ = 0 implies f = 0, but this is generally false, as can

be seen already for step functions. Indeed, if φ = aχA where the A has measure zero (µ(A) = 0), then∫
φdµ = 0 even if a 6= 0. We say that a property that holds off of a set of measure zero holds almost

everywhere, or a.e., for short1.

Proposition 4.5. If f ∈ L+ and
∫
f dµ = 0, then f = 0 almost everywhere.

Evidently we are free to alter measurable functions on a set of measure zero without altering their
integrals. It follows that Theorem 4.2 holds under the relaxed condition that fn ↗ f pointwise a.e.
(hereafter we just say “fn ↗ f a.e.”), rather than pointwise everywhere.

5 Integrating real and complex functions

If f is a R-valued measurable function, then f = f+ − f− where f+ = max (f, 0) and f− = −min (f, 0)
are measurable (c.f. Prop. 3.1) and positive. Note that |f | = f+ + f− is also measurable and positive.
We say f is integrable if ∫

|f | dµ <∞,

which implies that both
∫
f+ dµ and

∫
f− dµ are finite, and we define∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

We denote the set of real valued integrable functions by L(X;R).

Proposition 5.1. L(X,R) is a vector space,
∫
· dµ : L(X;R) −→ R is a linear functional, and∣∣∫ f dµ∣∣ ≤ ∫ |f | dµ.

Likewise, we say a complex valued function g is integrable if
∫
|g| dµ <∞, which holds if and only

if Re g and Im g are integrable real functions, and we define∫
g dµ =

∫
Re g dµ+ i

∫
Im g dµ.

Denote the set of complex valued integrable functions by L(X;C). Proposition 5.1 extends to L(X;C).
The workhorse limit theorem in Lebesgue integration theory is the following.

1Given a measure space (X,A, µ), it is technically useful to suppose that A contains all subsets of sets of µ measure 0,
(which should have measure 0 by monotonicity), and this can always be arranged by enlarging A. Such a µ is said to be
complete.
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Theorem 5.2 (Lebesgue Dominated Convergence Theorem). Let (fn) be a sequence in L(X;C) such
that fn → f pointwise a.e., and suppose there exists a real valued g ≥ 0 with

∫
g dµ < ∞ and |fn| ≤ g

for all n. Then f is integrable and ∫
f dµ = lim

n

∫
fn dµ.

6 Construction of measures

How do we come up with useful measures in practice? One way is to start with a putative measure
defined on some collection of sets, not necessarily a σ-algebra, and try to extend it.

For example, the starting point for Lebesgue measure in Rn is the standard volume of a “rectangle”
A = [a1, b1] × · · · × [an, bn], which is λ(A) =

∏n
i=1(bi − ai). We can extend λ additively to the set A

of countable disjoint unions of such rectangles. Then λ(∅) = 0 and it is countably additive, but A is
not a σ-algebra as it is not closed under complements, so we wish to extend λ to a measure on some
σ-algebra which contains A. (Note that any such σ-algebra will contain the σ-algebra generated by A,
which is the Borel algebra BRn).

Suppose more generally that λ : A −→ [0,∞] satisfies the conditions of a measure for some collection
A of subsets of X, not necessarily a σ-algebra, but closed under disjoint countable unions. For an
arbitrary subset E ⊂ X, we define

λ∗(E) = inf {λ(A) : E ⊂ A, A ∈ A} (2)

Then λ∗ : P(X) −→ [0,∞] may not be a measure, but it satisfies the weaker properties of a so-called
outer measure:

(M1) λ∗(∅) = 0

(M3) E ⊂ F =⇒ λ∗(E) ≤ λ∗(F )

(M4) λ∗(
⋃

nEn) ≤
∑

n λ
∗(En)

An arbitrary subset F ⊂ X is said to be λ∗-measurable if

λ∗(E) = λ∗(E ∩ F ) + λ∗(E ∩ F c) for every set E ⊂ X. (3)

Note that, in the particular case that E ∈ A is a basic set containing F , λ∗(E ∩F ) = λ∗(F ) is the outer
measure of F , while λ∗(E) − λ∗(E ∩ F c) is a kind of “inner measure” of F—the measure of the best
approximation of F from the inside. Then (3) says that these agree if F is measurable. For technical
reasons it is necessary to demand (3) hold for all sets E.

Theorem 6.1 (Carathéodory’s Theorem). Suppose λ∗ : A −→ [0,∞] is an outer measure (i.e., satisfies
(M1), (M3) and (M4) above). Then the collection M of λ∗-measurable sets is a σ-algebra and λ∗ is a
complete measure on M.

Applying Carathéodory’s Theorem to the outer measure defined by (2), where λ is the standard
volume on the set A of countable disjoint unions of rectangles in Rn, leads to Lebesgue measure
(Rn,M, λ) on Rn. There is no particularly nice characterization of the Lebesgue measurable setsM; it
is strictly larger than the Borel σ-algebra BRn on the one hand, yet it is not all of P(Rn) on the other
hand. Indeed, results such as the Banach-Tarski Paradox imply the existence of Lebesgue unmeasurable
sets.

The key property of (Rn,M, λ) is its behavior with respect to translations, dilations, and rotations.

Proposition 6.2. If E ∈ M and s ∈ Rn, then E + s ∈ M and λ(E + s) = λ(E). Likewise aE ∈ M
for a ∈ R and λ(aE) = |a|λ(E). Finally, if T ∈ O(n) is an orthogonal transformation (n × n matrix
with T ∗T = I) , then T (E) ∈M and λ

(
T (E)

)
= λ(E).

5



7 Lp spaces

We would like to equip L(X;C) with a norm given by integration; however, from Proposition 4.5∫
|f | dµ = 0 only implies that |f | = 0, and hence f = 0 holds almost everywhere—off of a set of

measure zero. For this reason set

L1(X;C) = L(X;C)/Z, Z = {f ∈ L(X;C) : f = 0 a.e.} .

Thus L1(X;C) consists of equivalence classes [f ] where f ∼ g provided f = g almost everywhere.
However, it is customary to confuse an integrable function with its equivalence class and drop the []
from the notation.

In light of Proposition 5.1 we obtain

Proposition 7.1. L1(X;C) is a normed space with respect to the norm ‖f‖1 =
∫
|f | dµ.

In general, for 1 ≤ p <∞, we say a measurable function f : X −→ C is p-integrable if∫
|f |p dµ <∞.

As above, finiteness of this integral implies that
∫
f dµ ∈ C exists, and

∫
|f |p dµ = 0 if and only if f = 0

a.e. We define
Lp(X;C) = {f : X −→ C p-integrable} /Z.

The proofs of the following two results are essentially the same as for the sequence spaces `p2:

Proposition 7.2 (Hölder’s inequality). Let 1 < p < ∞ and 1/p + 1/q = 1, and f ∈ Lp(X;C),
g ∈ Lq(X;C). Then fg ∈ L1(X;C) and

‖fg‖1 ≤ ‖f‖p ‖g‖q .

Proposition 7.3 (Minkowski’s inequality). Let f, g ∈ Lp(X;C), 1 ≤ p < ∞. Then f + g ∈ Lp(X;C)
and

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Corollary 7.4. The spaces Lp(X;C), for 1 ≤ p <∞ are normed vector spaces.

To show that Lp(X;C) is complete, and hence a Banach space, it is convenient to use the next
result, which gives an alternate characterization of completeness for normed spaces.

A series
∑∞

n=1 xn in a normed space (X, ‖·‖) is said to converge if the sequence sk =
∑k

n=1 xn
of partial sums converges to some s ∈ X, and then we write s =

∑∞
n=1 xn. The series is said to be

absolutely convergent if the series
∑∞

n=1 ‖xn‖ converges in R.

Proposition 7.5. A normed space (X, ‖·‖) is complete if and only if every absolutely convergent series
converges.

2Observe that `p is precisely Lp(N;C) when N is equipped with the counting measure m : S ⊆ N −→ |S| .
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Proof. Suppose X is complete and
∑∞

n=1 ‖xn‖ converges. Then

‖sk − sm‖ =
∥∥∥ m∑
n=k

xn

∥∥∥ ≤ m∑
n=k

‖xn‖

so (sk) is Cauchy and hence convergent.
Conversely, suppose every absolutely convergent series converges in X, and let (xn) be a Cauchy

sequence. Define a subsequence (xnk
) by the condition

‖xi − xj‖ ≤ 2−k ∀i, j ≥ nk.

If we set y1 = xn1 and yk = xnk
− xnk−1

for k > 1, then we may express the xnk
as partial sums

xnk
=
∑k

i=1 yi. Since
∞∑
i=1

‖yi‖ =
∞∑
i=1

∥∥xni − xni−1

∥∥ ≤ ∞∑
i=1

21−i <∞,

it follows by hypothesis that limk→∞ xnk
=
∑∞

i=1 yi exists. Since (xn) is Cauchy and converges along a
subsequence, (xn) itself converges to the same limit.

Proposition 7.6. Lp(X;C) is complete.

Proof. Let (fn) be a sequence in Lp(X;C) such that
∑∞

n=1 ‖fn‖p = B < ∞ converges in R. By the

previous result, it suffices to show that
∑∞

n=1 fn converges in Lp(X;C).

Set gk =
∑k

n=1 |fn|. Then (gk) is a sequence of positive functions which is pointwise increasing,
hence converges pointwise to g =

∑∞
n=1 |fn| ∈ L+, and gpk → gp ∈ L+ as a pointwise increasing sequence

as well. (Note that g may take the value ∞.) The norms ‖gk‖p are uniformly bounded:

‖gk‖p =
∥∥∥ k∑
n=1

|fn|
∥∥∥
p
≤

k∑
n=1

‖fn‖p ≤
∞∑
n=1

‖fn‖p = B,

and then by the Monotone Convergence Theorem,

‖g‖pp =

∫
gp dµ = lim

k

∫
gpk dµ = lim

k
‖gk‖pp ≤ B,

so g ∈ Lp(X; [0,∞)
)
. In particular g(x) =

∑∞
n=1 |fn(x)| is finite almost everywhere.

Now consider the series
∑∞

n=1 fn. Since
∑∞

n=1 fn(x) converges absolutely almost everywhere, it
follows that it converges a.e. Writing f =

∑∞
n=1 fn for this a.e. limit, it follows from the fact that

|f | ≤ g a.e. and g ∈ Lp(X;R) that f ∈ Lp(X;C).
Finally, to show that the series converges in the Lp norm, observe that

∣∣∣f − k∑
n=1

fn

∣∣∣p ≤ ∣∣∣ |f |+ k∑
n=1

|fn|
∣∣∣p ≤ 2pgp ∈ L1(X;C),

and then by the Dominated Convergence Theorem it follows that

lim
k→∞

∥∥∥f − k∑
n=1

fn

∥∥∥p
p

= lim
k→∞

∫ ∣∣∣f − k∑
n=1

fn

∣∣∣p dµ =

∫
lim
k→∞

∣∣∣f − k∑
n=1

fn

∣∣∣p dµ = 0

hence the series converges in Lp(X;C).
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The isomorphism (`p)′ ∼= `q for 1/p+1/q = 1 has a natural analogue for Lp(X;C). The proof, which
uses the Radon-Nikodym theorem, is outside the scope of these short notes.

Theorem 7.7. Let 1 < p <∞ and 1/p+ 1/q = 1. Then the map

Lq(X;C) 3 g 7−→ Fg ∈
(
Lp(X;C)

)′
, Fg(f) =

∫
gf dµ

is an isometry.

What about (L1)′? It turns out that the natural analogue of `∞ is the space L∞(X;C) of (a.e.
equivalence classes of) measurable functions f : X −→ C which are bounded almost everywhere. This
space is equipped with the norm

‖f‖∞ = inf {M : µ({f > M}) = 0} = inf

{
sup
x
|g(x)| : g = f a.e.

}
,

with respect to which (L∞(X;C), ‖·‖∞) may be shown to be a Banach space. Under some conditions
on (X,A, µ)—in particular if it is σ-finite, meaning X =

⋃∞
n=1En with µ(En) < ∞ which holds in

particular for Rn with Lebesgue measure—then the map

L∞(X;C) 3 g 7−→ Fg ∈
(
L1(X;C)

)′
, Fg(f) =

∫
gf dµ

is again an isometry. There is almost never an isometry between L1 and (L∞)′, except in very limited
cases, such as when X is a finite set with counting measure; in this case Lp(X) is simply Cn, n = |X|,
for each p, with ‖x‖p =

(∑n
i=1 x

p
i

)1/p
, and ‖x‖∞ = max {|x1| , . . . , |xn|}.
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