
FUNCTIONAL ANALYSIS MIDTERM FALL 2016

Problem 1. You showed on a homework set that if M ⊂ X was a closed subspace of a Banach
space X, then

‖x+M‖ = inf {‖x+ y‖ : y ∈M}
is a norm on the quotient space X/M . Here are some further problems:

(a) Show that, for every ε > 0, there exists x ∈ X with ‖x‖ = 1 such that ‖x+M‖ ≥ 1− ε. [Hint:
For any x′ ∈ X, there is some m ∈M such that ‖x′ +m‖ ≤ ‖x′ +M‖+ ε.]

(b) Deduce from (a) that the quotient map π : X −→ X/M , π(x) = x + M , is a bounded linear
operator with ‖π‖ = 1.

(c) Prove that X/M is complete. [Hint: Prove that every absolutely convergent series in X/M
converges—by a result from class, this is an equivalent characterization of completeness.]

Solution.

(a) Let x′ /∈M . Then by the definition of infimum, for any ε′ > 0 there exists m ∈M such that∥∥x′ +m
∥∥ ≤ ∥∥x′ +M

∥∥+ ε′.

Given ε > 0, choose ε′ > 0 such that ε′/ ‖x′ +M‖ < ε. Then with m as above let x =
(x′ +m)/ ‖x′ +m‖. We have ‖x‖ = 1 and, since x ∈ x′/ ‖x′ +m‖+M ,

‖x+M‖ =
∥∥x′/∥∥x′ +m

∥∥+M
∥∥

=
∥∥x′ +m

∥∥−1 ∥∥x′ +M
∥∥

≥ 1− ε′/
∥∥x′ +m

∥∥
≥ 1− ε′/

∥∥x′ +M
∥∥

= 1− ε.

(b) Linearity is straightforward and amounts to the statement that ax+by+M = a(x+M)+b(y+
M). To see that π is bounded with unit norm, let ‖x‖ = 1. Then ‖π(x)‖ = ‖x+M‖ ≤ ‖x‖ = 1
since 0 ∈ M (this was already used above). Thus π is bounded and ‖π‖ ≤ 1. On the other
hand, by part (a) ‖π‖ ≥ 1− ε for all ε > 0, so ‖π‖ ≥ 1, and therefore equality holds.

(c) Suppose
∑∞

n=1 ‖xn +M‖ < ∞. For each n there exists yn ∈ X with yn ∈ xn + M such that
‖yn‖ ≤ ‖xn +M‖+ 2−n, by the infimum property. Then

∑∞
n=1 ‖yn‖ ≤

∑∞
n=1 ‖xn +M‖+ 1 <

∞, so y =
∑∞

n=1 yn converges in X by completeness.

The partial sums sk =
∑k

n=1 yn converge to y in X, and by continuity and linearity of π,

π(sk) =

k∑
n=1

π(yn) =

k∑
n=1

xn +M → π(x),

so
∑∞

n=1 xn +M converges. Since this was an arbitrary absolutely convergent series, it follows
that X/M is complete.

�

Problem 2. Let X be a Banach space. Prove that a linear functional f : X −→ C is bounded if
and only if f−1({0}) is closed. [Hint: For the “if” direction, use Problem 1.(b)]
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Solution. If f is bounded then it is continuous, and therefore f−1({0}) is closed as {0} ⊂ C is a
closed set.

Conversely, suppose M = f−1({0}) is closed. Observe that f factors uniquely as a composition

f = f̃ ◦π, where f̃ : X/M −→ C is given by f̃(x+M) = f(x). Since f(M) ⊂ {0} this is well-defined

independent of the chosen representative x of x+M . Furthermore f̃ is injective, since f̃(x+M) = 0
if and only if f(x) = 0, in which case x ∈M , i.e., x+M = 0 +M .

By injectivity of f̃ , dim(X/M) ≤ dim(C), and therefore f̃ is automatically bounded, as a linear

map on finite-dimensional spaces. By Problem 1.(b), π is bounded, so f = f̃ ◦ π is bounded.
The result holds for any linear map f : X −→ Y , provided Y is finite dimensional. If Y is infinite

dimensional, then f−1({0}) may be closed, yet f unbounded, as for f : A ⊂ `∞ −→ `∞, f((sn)) =
(nsn), where A is the subspace of finitely non-zero sequences, in which example f−1({0}) = {0}. �

Problem 3. Let X be a Banach space and T ∈ B(X,X) a bounded linear operator such that
‖I − T‖ < 1, where I denotes the identity operator.

(a) Prove that T is invertible, with inverse given by the Neumann series

T−1 =

∞∑
n=1

(I − T )n.

(b) Using the previous result, show that if T has bounded inverse and ‖S − T‖ <
∥∥T−1∥∥−1, then

S is invertible. Conclude that the set of invertible operators in B(X,X) is open.

Solution. Whoops, there was a typo! The series should start at n = 0, where (I − T )0 := I.

(a) The series
∑∞

n=0(I −T )n is absolutely convergent as
∑∞

n=0 ‖(I − T )n‖ ≤
∑∞

n=0 ‖I − T‖
n <∞,

the latter being a convergent geometric series. Since B(X,X) is a Banach space, it follows that
S =

∑∞
n=0(I − T )n converges to a bounded operator. In particular (I − T )n → 0. Then

TS =
(
I − (I − T )

)
S = lim

k

(
I − (I − T )

) k∑
n=0

(I − T )n = lim
k
I − (I − T )k+1 = I,

and similarly ST = I. It follows that T is invertible and T−1 = S.

(b) Suppose T has bounded inverse and ‖S − T‖ <
∥∥T−1∥∥−1. Then∥∥I − T−1S∥∥ =

∥∥T−1(T − S)
∥∥ ≤ ∥∥T−1∥∥ ‖S − T‖ < 1,

so T−1S is invertible by part (a). It follows that S is invertible with inverse S−1 = (TT−1S)−1 =
(T−1S)−1T−1.

If U denotes the set of invertible operators in B(X,X), we have just shown that T ∈ U
implies the open ball B(T,

∥∥T−1∥∥−1) lies in U , so U is open.

�

Problem 4. Let {en : n ∈ N} be an orthonormal sequence in a Hilbert space H. Show that the
subspace {x ∈ H : x =

∑
anen} of convergent series is equal to the closure of span {en}.

Solution. If x =
∑
anen then x = limxk, where xk =

∑k
n=1 anxn ∈ span {en}, so it follows that

the subspace C = {x ∈ H : x =
∑
anen} is contained in span {en}.

In the other direction, suppose (xk) is a sequence in span {en} that converges in H to x ∈
span {en}, and let y =

∑
〈x, en〉 en ∈ C ⊂ span {en}, which converges by Bessel’s inequality. Then

〈y − x, en〉 = 0 for all n by orthonormality and we conclude

y − x ∈ span {en} ∩ span {en}
⊥

= {0} ,
so x = y ∈ C. �



Problem 5. Take for granted the fact that L2
(
[0, 1]

)
= L2

(
[0, 1)

)
is a separable Hilbert space

(for instance, it has a complete orthonormal basis given by {1, sin(2πnx), cos(2πmx) : n,m ∈ N}).
Prove that L2(R) is separable, by writing R =

⋃
n∈Z[n, n+ 1) and identifying L2

(
[n, n+ 1)

)
, n ∈ Z

with mutually orthogonal subspaces in L2(R).

Solution. Extension by zero defines an injective isometry εn : L2([n, n+1]) −→ L2(R) for each n, so
we may regard L2([n, n+1]) as a (closed) subspace of L2(R). Furthermore, elements of L2([n, n+1])
and L2([m,m+ 1]) for m 6= n are orthogonal in L2(R), so the subspaces are mutually orthogonal.

Each L2([n, n+1]) has a countable orthonormal basis
{

1[n,n+1), sin(2πkx)[n,n+1), cos(2πmx)[n,n+1)

}
(the subscripts denote multiplication by the characteristic function of [n, n+1)), so taking the union
of these gives a countable orthonormal set in L2(R).

It remains to show that this set is total. But if f ∈ L2(R) is orthogonal to each of the elements,
then it follows by the basis property that f |L2([n,n+1]) = 0, which is equivalent to f = 0 a.e. on

[n, n+ 1). This holds for each n and hence f = 0 (almost) everywhere, so f = 0 in L2(R). �

Problem 6. Define the sequence space

h2,1 =

{
x = (xn) ⊂ C :

∞∑
n=1

(1 + n2) |xn|2 <∞

}
.

(a) Show that

〈x, y〉 =
∞∑
n=1

(1 + n2)xnyn

defines an inner product for which h2,1 is a Hilbert space.
(b) Show that h2,1 ⊂ `2 and ‖x‖`2 ≤ ‖x‖h2,1 for all x ∈ h2,1.

Solution.

(a) That h2,1 is a vector space is easy to show (use the triangle inequality). Likewise, the sesquilin-
earity and nonnegativity of 〈·, ·〉 is straightforward on sequences for which it is defined, and the
polarization identity

〈x, y〉 =
1

4

4∑
j=0

ij
∥∥x+ ijy

∥∥2
h2,1

shows that 〈x, y〉 is defined for all x, y ∈ h2,1, where

‖x‖2h2,1 =
∞∑
n=1

(1 + n2) |xn|2

is the associated norm, finiteness of which is the defining condition for h2,1.
Thus h2,1 is an inner product space. To see it is complete, suppose (xk) is Cauchy. Then

(xkn) is Cauchy in C for each fixed n, so xkn −→ xn ∈ C. To see that x = (xn) is in h2,1 and
that xn −→ x in h2,1, fix ε > 0 and N ∈ N, and note that

N∑
n=1

(1− n2)
∣∣∣xkn − xln∣∣∣2 < ε

for k and l sufficiently large. Using continuity of finite sums, we may take the limit l→∞ and
deduce

N∑
n=1

(1− n2)
∣∣∣xkn − xn∣∣∣2 ≤ ε



for all N , and then N → ∞ shows that xk − x ∈ h2,1 with
∥∥xk − x∥∥2 ≤ ε for all k sufficiently

large. Since xk ∈ h2,1, it follows that x ∈ h2,1 and since ε was arbitrary it follows that xk −→ x
in h2,1.

(b) Since 1 + n2 ≥ 1 for all n, we obtain the desired inequality

‖x‖2h2,1 =
∞∑
n=1

(1 + n2) |xn|2 ≥
∞∑
n=1

|xn|2 = ‖x‖2`2 ,

which also shows that the identity map is an injective bounded linear map h2,1 −→ `2.
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