Do not write in the boxes immediately below.
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Math 2321 Final Exam
December 12, 2013

Instructor’s name Your name

Please check that you have 9 different pages.

Ans‘t:ecrt%/from your calculator, without supporting work, are worth zero points.
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K/" 1) A charge distribution on a plane is creating an electric field. The electrical potential P(z,y) measures the potential

energy of a unit point charge due to its position in the field. The function is given by P(z,y) = -

V(@+2)2+(y—1)2"

a) (4 points) Find the gradient vector of the potential at (1,5).
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b) (4 points) An equipotential line is a curve on our plate along which the potential is constant. What is an equation for

the tangent line of the equipotential line passing through (1,5)?

3(x~0) + 4 (y-5)=0 .
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(8 pquns) Find the critical points of f(z,y) = z* + 8y* — 6zy, verify that each critical point is non-degenerate, and
determine what type of critical point it is.
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3) (10 points) Suppose that a cardboard box is to be constructed with no top and a volume of 4000 cubic inches. Suppose

that the cardboard for the bottom costs 5 cents per square inch, while the cardboard for the sides costs 1 cent per square
inch. Find the dimensions of the box which minimize the cost of the cardboard required.
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C1) (8 points) For the followmg sum of integrals,

evaluate the resulting integral usglg this new order. / [ / 2 —~/$/
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5) (10 points) Let S be the solid reglon which is bounded on the sides and top by the planes where z =0 and z+ 2 =1
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6) (8 points) Let S be the solid region in the Ist octant (i.e., where z > 0, y > 0, and z > 0) in R® which is contained
within the sphere where 22 + 32 + 22 = 16, bounded by the cones where z = m and zv/3 = m , and bounded
by the planes with equations'y = ¢ and %4/3 = z. Find the volume of S.
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(8 points) Find th

ass of the solid right circular cylinder where —2 < z < 2 and z? +y? < 4, if the density of the solid

= 32 + 42 kg/m3 Here z,y, and z are in meters.
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8) (8 points) Let f(z,y,2) = 22 +y* + 2* and F = V. Find the line integral of F along the oriented curve, consisting of
four line segments, which go from (1,0,0) to (1,2,5), then from (1,2,5) to (2,—3,7), then from (2,-3,7) to (—4,6,-7),
and then from (—4,6,—7) to (0,0,1).
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9) (8/points) Calculate [, F - dr, where F = (2% —y, y® + x) and C is the circle of radius 5 centered at (1,1) and oriented
clockwise.
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10) Consider the parameterization r(u,v) = (u? + v,u + v,uv), where 1 <u < 2 and 0 < v < 1, and let M be the surface
parameterized by r.
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a) (3 points) We want to orient M by using i |
u 7)

r, X r, # 0 (the zero vector) provided that 1 <u <2and 0 <v < L.
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for the positive direction. Show that this is possible by showing that
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b) (5 points) Orient M as in part (a). Consider the vector field F(z,y, 2) = (y — z, 2, 0). Set up, but do not evaluate an
iterated integral, in terms of u and v for the flux integral [ [ o F-ndS of F through M. You should “simplify” your iterated

integral by evaluating any dot products or cross products until all that remains is an iterated integral of a polynomial in
the variables v and v.
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11) (8 points) Let V(z,y,2) =
m/s, where z, y, and 2z ar

(z,y,2), Qz,y, 2), (m,y,z)) be a continuously differentiable velocity vector field, in
easured in meters.

Suppose it is kngwn that Q(z,v, z) = y? + e* and R(z,y,2) = 2° + sinz, in meters per second. Furthermore, suppose
that the flux o measured through a large number of closed surfaces, with the result that the flux is always 0 m3/s.
From this, assume that the flux is always 0 m?/s through every reasonably nice closed surface. Give one possible function
P that would make this true.
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12) Suppose that F(z,y, z) = (2%, 2z + 4> + Tz, € + 3y + sin 2) is a force field on R?, measured in Newtons, where z, y,
and z are measured in meters.

a) (2 points) Calculate the curl, exF, of F.
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We continue to use the vector field F from above. Suppose that M is a surface, with boundary dM, in R3 about which you
have the following data: M is contained in the plane P where z + 2y + 3z = 6, the area of M is 7 square meters, and the
positive direction on M is chosen to point upwards, away from the origin (i.e., is chosen to have a positive z component).

b) (1 point) To give the boundary M the orientation that is compatible with the orientation on M, should you orient dM
clockwise or counterclockwise, if you are looking downwards from above the plane P, towards the origin?
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¢) (4 points) Giving M its compatible orientation, calculate [, F - dr.

(You have enough data to answer this. Hint: What is a normal vector to the plane? 2 . 3 )
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d) (1 point) Physically, what does [, F « dr give you?
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