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Introduction

These notes were written to accompany a graduate class taught at Northeastern University in
Spring 2016. The goal was to cover some classical topics concerning linear elliptic operators
on compact manifolds, including elliptic regularity and Fredholm theory, spectral asymptotics
(Weyl’s formula), and the local Atiyah-Singer index formula using heat kernel methods.

The point of view of these notes is decidedly microlocal, in the sense that operators are
studied in terms of their (distributional) Schwartz kernels. Objects of interest, such as gen-
eralized inverses of elliptic operators and heat kernels, are first approximated by constructing
parametrices, which are then improved by some iterative procedure and then compared to the
true objects in order to deduce important properties of the latter.

The audience for the class was mixed, with some students having prior expertise with
pseudodifferential operators, and other students having limited analytical background. For
this reason, the somewhat unusual choice was made to use pseudodifferential operators on
manifolds in order to prove key results about elliptic operators, but to skip the technical
development of these operators. Thus we take an axiomatic approach, positing the existence
of a class of operators satisfying a handful of fundamental axioms, which constitute a kind of
user’s interface for pseudodifferential operators.

There are many good sources for the rigorous development of pseudodifferential operators
on manifolds. Among these I mention in particular Pierre Albin’s excellent notes [Alb15]
written for a similar course at UIUC, which include a detailed background on distribution
theory, the requisite Riemannian geometry, and a rather complete development of ΨDOs, in
addition to the topics covered here. I followed Albin’s approach quite closely in places, and
was under the impression that I was complementing his work by covering the Atiyah-Singer
theorem in these notes, which was not covered in detail in the first version [Alb12] of notes.
It was only after the end of my course that I discovered Albin’s later version [Alb15] of his
notes, updated to include the index theorem. Thus it is probably the case that these notes
constitute a proper subset of Albin’s notes, though I hope some readers may yet benefit from
the different exposition here, however slightly it may differ!

Chris Kottke, June 14, 2016.
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Chapter 1

Elliptic theory on compact manifolds

1.1 Differential operators

Consider Rn with coordinates x = (x1, . . . , xn). A differential operator on Rn is a linear
operator on C∞(Rn) of the form

Pu =
∑
|α|≤k

aα(x)∂αxu(x). (1.1)

Here the coefficients aα(x) ∈ C∞(Rn) are smooth functions and we we employ multi-index
notation, where α = (α1, . . . , αn) ∈ Nn, |α| =

∑
i αi, and ∂αx is shorthand for the mixed partial

derivative operator

∂αx = ∂α1
x1 · · · ∂

αn
xn =

∂α1

∂x1
· · · ∂

αn

∂xn
.

The integer k ∈ N is the order of the operator.

Suppose now M is a smooth manifold of dimension n. Recall that this means M has a
maximal atlas of smoothly compatible coordinate charts (U,U ′, φ), where

φ : U ⊂M
∼=→ U ′ ⊂ Rn

is a homeomorphism, and “smoothly compatible” means that

φb ◦ φ−1
a : U ′a ∩ φa(Ub) ⊂ Rn → U ′b ∩ φb(Ua) ⊂ Rn

is a diffeomorphism. We will typically omit φ and U ′ from the notation, and observe the
convention of regarding the coordinate functions xi := xi ◦ φ : U → R as being functions on
U ⊂M itself; thus we will say x = (x1, . . . , xn) are local coordinates on U ⊂M .

Definition 1.1. A differential operator of order k on M is a linear operator on C∞(M)
given locally by expressions of the form (1.1). In other words, on any coordinate chart U , the
function Pu restricted to U has the form (1.1).
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8 Linear Analysis on Manifolds

Observe that this is well-defined; namely, if we have a smooth change of coordinates x =
x(x′), then (∂x1 , . . . , ∂xn) = ∂x = D(x, x′)−1∂x′ where

D(x, x′) =
[
∂xj
∂x′i

]
is the Jacobian matrix, whose entries are smooth functions. It follows that (1.1) becomes

Pu(x′) =
∑
|α|≤k

a′α(x′)∂αx′u(x′)

for a new set of coefficients a′α(x′). The general expression for the a′α in terms of the aα is
quite complicated! However, we will soon see that the top order part behaves nicely.

We denote by Diffk(M) the set of differential operators of order at most k on M . It is easy
to see that this is a vector space over R (or C if we use complex valued functions), and that
for all l ≤ k, we have inclusions

Diff l(M) ⊂ Diffk(M).

In particular Diff0(M) = C∞(M) is nothing more than the smooth functions on M , considered
as multiplication operators on C∞(M). Diff1(M) includes Diff0(M) as well as the smooth
vector fields V(M) = C∞(M ;TM), which we recall is the (vector) space of linear derivations
on C∞(M):

V(M) 3 V : C∞(M)→ C∞(M), V (fg) = f V (g) + g V (f),

and these have local coordinate expressions

V = a1(x)∂x1 + · · ·+ an(x)∂xn .

Of course, as operators on C∞(M), we may compose differential operators, and it is easy
to see that

Diffk(M) ◦Diff l(M) ⊂ Diffk+l(M). (1.2)

Again, we may verify this in local coordinates, but observe that if

P =
∑
|α|≤k

aα(x)∂αx , Q =
∑
|β|≤l

bβ(x)∂βx ,

P ◦Q =
∑
|γ|≤k+l

cγ(x)∂γx ,

then the general formulas for cγ in terms of the aα and bβ are complicated!
Algebraically speaking, the set

Diff(M) =
⋃
k∈N

Diffk(M)

of all differential operators has the structure of an associative filtered algebra1, where the
filtration is by N. The term ‘filtered’ here simply reflects the fact that Diff(M) is a union of
subsets indexed by N, and (1.2) holds.

1Some prefer the term ‘ring’ here, which is certainly applicable, though Diff(M) is also a vector space over
R (or C, if we allow complex coefficients), so we will prefer the term ‘algebra’.
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1.1.1 Principal symbols

The next order of business is to show that the highest order terms of differential operators
behave nicely. Let us revert to the Euclidean setting for just a moment.

Definition 1.2. Let
P =

∑
|α|≤k

aα(x)∂αx

be a differential operator of order k on Rn. The principal symbol of P is the (complex-valued)
function σk(P ) ∈ C∞(Rn × Rn) = C∞(T ∗Rn) given by

σk(P )(x, ξ) = ik
∑
|α|=k

aα(x)ξα, (1.3)

where ξ = (ξ1, . . . , ξn) and ξα = ξα1
1 · · · ξαn

n .

Note that the sum is only over terms of order exactly k. We will often omit the subscript
k from the notation and just write σ(P ) := σk(P ). Observe that not only is σ(P ) smooth in
both variables, it is in fact a (homogeneous) polynomial of order k in the ξ variables. The
factor of i, which is a standard convention, seems a bit annoying at this point, but it would
cause much more pain later on if we leave it off. If we are already considering differential
operators on complex functions then it is not a big deal, but we are often interested in real
functions (or sections of real vector bundles, as below). In this case we can always pass to
the complexification to do our analysis, restricting back to the real functions/sections at the
end. From this point on, unless otherwise specified, we will usually assume that functions are
complex-valued.

Lemma 1.3. Let P be as above and f ∈ C∞(Rn). Then

e−itfPeitf =

k∑
j=0

tjPj ,

where Pj ∈ Diffk−j(Rn) is independent of t. In particular,

Pk = σ(P )(x, dfx),

where the notation means that if dfx = ξ1 dx1 + · · ·+ ξn dxn, then σ(P )(x, dfx) = σ(P )(x, ξ).

Proof. Let df =
∑

j ξj(x) dxj , where ξj = ∂xjf . Composing eitf with ∂xj as operators on
smooth functions and taking the commutator gives

∂xje
itf = eitf (it ξj + ∂xj )

Thus
e−itfPeitf =

∑
|α|≤k

aα(x)(it ξ + ∂x)α,
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where (it ξ+∂x)α = i|α|(t ξ1 +∂x1)α1 · · · (t ξn+∂xn)αn . Noting that each ξj = ξj(x) is a smooth
function, and collecting terms of like order in t gives the result. In particular, for the highest
order tk, we get

Pk = σ(P )(x, df) = ik
∑
|α|=k

aα(x)(df)α.

This result justifies the claim that σ(P ) may be regarded as a function on T ∗Rn, and
suggests a coordinate invariant definition which we shall use in the general setting of manifolds.

Definition 1.4. Let P ∈ Diffk(M). The principal symbol of P is the smooth function
σ(P ) ∈ C∞(T ∗M) (restricting fiberwise to homogeneous polynomials of order k) given by

σk(P )(x, ξ) = lim
t→∞

(t−ke−itfPeitf )(x),

for any f ∈ C∞(M) such that dfx = ξ.

Note that, by Lemma 1.3, this depends only on df and not f . One more modification of this
will be convenient below. Recall that a homogeneous polynomial on a vector space is uniquely
determined by its value on the unit (or any) sphere; indeed, given p(ω) for ω ∈ Sn−1, we recover
the homogeneous polynomial of order k by p(tω) = tkp(ω). Alternatively, a homogeneous
polynomial determines a section of a trivial line bundle over the cosphere bundle

S∗M →M, S∗M = (T ∗M \ 0)/(0,∞),

where we have written the cosphere bundle as a quotient of the complement of the zero section
in T ∗M by the dilation action of (0,∞) given by ξ 7→ tξ. Technically speaking, these line
bundles are not canonically trivialized, but we may choose trivializations (say, by using a
Riemannian metric to identify S∗M with the unit sphere bundle in T ∗M) and then we may
regard the principal symbol as a map

σk : Diffk(M)→ C∞(S∗M),

the advantage being that the maps now have the same image for various k.

Proposition 1.5. The map σ : Diff(M) → C∞(S∗M) is a homomorphism. That is, if P ∈
Diffk(M) and Q ∈ Diff l(M), then

σk+l(P ◦Q) = σk(P )σl(Q).

Proof. This is evident from the definition, since

e−itfPQeitf = (e−itfPeitf )(e−itfQeitf )

= (tkσk(P ) +O(tk−1))(tlσl(Q) +O(tl−1))

= tk+lσk(P )σl(Q) +O(tk+l−1)

where O(tm) denotes terms of order tl for l ≤ m times differential operators on M .
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In particular, while differential operators certainly don’t commute in general, they do com-
mute at the level of principal symbols:

σ(P ◦Q) = σ(P )σ(Q) = σ(Q)σ(P ) = σ(Q ◦ P )

even though P ◦ Q 6= Q ◦ P . It is also easy to see that the assignment P 7→ σk(P ) vanishes
precisely on the subset Diffk−1(M), which is the first part of the following:

Proposition 1.6. For each k the symbol sequence

Diffk−1(M) ↪−→ Diffk(M)
σ−→ C∞(S∗M)

is exact.

Exercise 1.1. Prove this. Note that the only part of exactness we have not verified is surjec-
tivity of σ. However this is completely evident in local coordinates, and then different local
coordinate expressions may be put together using a partition of unity, where you can ignore
any terms involving derivatives of the partition of unity since these will involve differential
operators of order k − 1.

1.1.2 Bundles

We will want to consider not only differential operators acting on smooth functions, but also
ones acting between smooth sections of vector bundles.

We recall that a rank k complex (resp. real) vector bundle over M is a smooth manifold, E,
with a smooth, surjective map π : E → M whose fibers π−1(p) have the structure of a vector
space over C (resp. R) of fixed dimension k. Furthermore, there is a covering of M by open
sets U along with local trivializations, which are diffeomorphisms

φ : π−1(U)
∼=→ U × Ck

with respect to two of which the transition diffeomorphisms φb ◦φ−1
a on Ua∩Ub×Ck are linear

in the second variable. Denote by C∞(M ;E) the set of smooth sections of E, which is to say
smooth maps

C∞(M ;E) 3 s : M → E, s.t. π ◦ s = IM .

Let E → M and F → M be vector bundles of ranks l and m, respectively. Then a
differential operator P ∈ Diffk(M ;E,F ) is a linear operator from C∞(M ;E) to C∞(M ;F )
given locally by

Ps =
∑
|α|≤k

Aα(x)∂αx s(x), Aα ∈ C∞(Rn; Mat(m, l,C))

i.e., with coefficients given by local sections of the vector bundle Hom(E,F ) = E∗ ⊗ F →M .
The definition of the principal symbol given above generalizes to a map

σ : Diff(M ;E,F )→ C∞(S∗M ;π∗Hom(E,F )),
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where π∗Hom(E,F ) = Hom(π∗E, π∗F ) → S∗M is the pullback of Hom(E,F ) → M by the
cotangent projection π : S∗M →M . More pedantically, at a point (x, ξ) ∈ S∗M , π∗Hom(E,F )
simply consists of linear maps from Ex to Fx. We will often abuse notation by dropping the
π∗ and simply writing Hom(E,F )→ S∗M . As in Proposition 1.6, the symbol sequence

Diffk−1(M ;E,F ) ↪−→ Diffk(M ;E,F )
σ−→ C∞(S∗M ; Hom(E,F ))

is exact.

We also have composition of the principal symbols in the sense that if P ∈ Diffk(M ;F1, F2)
and Q ∈ Diff l(M ;F0, F1), then

σ(P ◦Q) = σ(P ) ◦ σ(Q) ∈ C∞
(
S∗M ; Hom(F0, F2)

)
with respect to the obvious linear composition map Hom(F1, F2)⊗Hom(F0, F1)→ Hom(F0, F2)
on S∗M .

Remark. We may want to consider real vector bundles E and F , in which case the principal
symbol is a section on S∗M of π∗HomC(E,F ) = π∗Hom(E,F ) ⊗ C. Alternatively, we may
just pass to the complexifications EC = E ⊗ C and FC = F ⊗ C at the outset.

Example 1.7. One main example we shall consider is the exterior derivative operator

d : C∞(M ; Λk)→ C∞(M ; Λk+1).

Here I am using shorthand notation Λk =
∧k T ∗M exterior powers of the cotangent bundle;

so C∞(M ; Λk) is the space of smooth k-forms, which is also sometimes denoted Ωk(M). This
is clearly a differential operator of order 1; in local coordinates

d :
∑
|I|=k

αI(x) dxI 7→
n∑
j=1

∑
|I|=k

∂xjαI(x) dxj ∧ dxI

where I ⊂ {1, . . . , n} and dxI denotes the product dxi1 ∧ · · · ∧ dxik with I = {i1 < · · · < ik}.
To compute the principal symbol of this operator, we may use Definition 1.4 and the

derivation property of d to compute

d(etf α) = eitf (itdf ∧ α+ dα),

which implies that

σ(d)(x, ξ) = iξ ∧ · ∈ π∗HomC(Λk,Λk+1) = π∗Hom(ΛkC,Λ
k+1
C ). (1.4)

It is important to think a little bit about what this means: we are at a point (x, ξ) ∈ T ∗M
(or possibly S∗M) and we are defining a linear homomorphism from the vector space (ΛkC)x =∧k T ∗xM ⊗C to the vector space (Λk+1

C )x =
∧k+1 T ∗xM ⊗C. The homomorphism is just given

by the exterior power with iξ, which is itself a vector in T ∗xM ⊗ C = (Λ1
C)x.
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1.1.3 Adjoints

Suppose now M is (oriented and) equipped with a Riemannian metric g. Among other things,
this means that there is a well-defined volume form

dVolg ∈ C∞(M ; Λn)

which is nonvanishing and defined uniquely by the property that whenever {e1, . . . , en} ⊂ TxM
is a positively oriented orthonormal basis with respect to g,

dVolg(e1, . . . , en) = 1.

In local (oriented) coordinates, with g =
∑

i,j gijdxi ⊗ dxj , we have

dVolg =
√

det(gij) dx1 ∧ · · · ∧ dxn.

This determines a well-defined smooth measure on M , which is to say an integration functional
on the space C∞c (M) of compactly supported functions by

C∞c (M) 3 f 7→
∫
M
f dVolg.

The subscript c in C∞c (M) denotes functions with compact support; recall that the support
of f is the set

supp(f) = {p : f(p) 6= 0}− ⊂M
given by the closure of the complement of f−1(0). In particular, ifM is compact then C∞c (M) =
C∞(M).

We obtain a (Hermitian) inner product on (complex-valued) functions by

C∞c (M ;C)× C∞c (M ;C) 7→ C,

(f, g) =

∫
M
f g dVolg,

and taking the completion with respect to the associated norm ‖f‖ = (f, f)1/2 leads to the L2

space

L2(M ;C) 3 f ⇐⇒
(∫

M
|f |2 dVolg

)1/2
<∞,

which is a Hilbert space in the usual way.
Suppose E → M is a vector bundle with a Hermitian inner product 〈·, ·〉. This just

means that each fiber Ex has a smoothly varying non-degenerate inner product, so that for
s, t ∈ C∞(M ;E) we have 〈s, t〉 ∈ C∞(M ;C). We may likewise combine this with the volume
form to get a non-degenerate pairing on forms:

C∞c (M ;E)× C∞c (M ;E) 7→ C,

(f, g) =

∫
M
〈f, g〉 dVolg,

the completion of which defines the Hilbert space L2(M ;E).
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Definition 1.8. The (formal2) adjoint of a differential operator P ∈ Diffk(M) is the (unique)
operator P ∗ ∈ Diffk(M) with the property that

(Pf, g) = (f, P ∗g) , for all f, g ∈ C∞c (M).

A similar expression defines the adjoint P ∗ ∈ Diffk(M ;F,E) of an operator P ∈ Diffk(M ;E,F )
when E and F are Hermitian vector bundles. Note that P ∗ maps sections of F to sections of
E.

Remark. In general, E and F need not be equipped with Hermitian metrics, and in that
case the natural adjoint of P ∈ Diffk(M ;E,F ) is an operator P ∗ ∈ Diffk(M ;F ∗, E∗), acting
on sections of the dual bundles. However, we shall mostly be concerned with the Hermitian
bundle case, in which case we have canonical identifications E ∼= E∗ and F ∼= F ∗.

If P ∈ Diffk(M ;E,F ) is given by the local expression P =
∑
|α|≤k Aα(x)∂αx , where Aα ∈

C∞
(
M ; Hom(E,F )

)
, then locally

P ∗ = ω(x)−1
∑
|α|≤k

(−1)|α|∂αxA
∗
α(x)ω(x) (1.5)

where dVolg = ω(x)dx1 ∧ · · · ∧ dxn is the local expression for the volume form and A∗α ∈
Hom(F,E) is the (pointwise) adjoint of Aα with respect to the Hermitian inner products on E
and F . (Again, let us emphasize that the above expression is to be understood as a composition
of operators on C∞(M ;F ).)

This can be expressed in the form P =
∑
|α|≤k Bα∂

α
x by commuting the terms ∂αx and A∗α,

but as always the general expression for the Bα in terms of the Aα is complicated. At the
principal symbol level, however we have the following:

Proposition 1.9. Let P ∈ Diffk(M ;E,F ), with respect to Hermitian vector bundles E,F →
M . Then the principal symbol of the dual is the dual of the principal symbol:

σ(P ∗)(x, ξ) = σ(P )(x, ξ)∗ ∈ C∞(S∗M ; Hom(F,E)).

Here the right hand side is the (fiberwise) dual of the section σ(P ) of Hom(E,F ), giving a
section of Hom(F,E).

Proof. For any u ∈ C∞c (M ;E), v ∈ C∞c (M ;F ) and f ∈ C∞(M), we have

tk
(
u, σ(P ∗)(df)v

)
+O(tk−1) =

(
u, e−itfP ∗eitfv

)
=
(
e−itfPeitfu, v

)
= tk

(
σ(P )(df)u, v

)
+O(tk−1)

= tk
(
u, σ(P )(df)∗v

)
+O(tk−1),

2We use the word ‘formal’ to emphasize that the adjoint is taken with respect to smooth compactly supported
functions; it is not (necessarily) the true adjoint of an operator between Hilbert spaces. A proper treatment of
the latter leads into technical discussions about domains of unbounded operators, which we will discuss later,
but wish to avoid at present.
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where we have used that (eitf )∗ = e−itf . It follows that σ(P ∗)((x, dfx) = σ(P )(x, dfx)∗ for all
x ∈M , f ∈ C∞(M), and hence σ(P ∗)(x, ξ) = σ(P )(x, ξ)∗.

Exercise 1.2. Prove the formula (1.5), and give an alternate proof of Proposition 1.9 using
this local formula, commuting ∂αx past A∗α(x) and ω(x) and throwing away terms of differential
order less than k.

Remark. It is common in Fourier analysis to use the notational convention

Dα
x = (−i)|α|∂αx ,

which is to say we replace the partial derivatives ∂xj by the operators Dxj = −i∂xj . Among
other reasons (behavior with respect to the Fourier transform being another one), this has the
advantage that, on Rn, (Dα

x )∗ = Dα
x , in contrast to (∂αx )∗ = (−1)|α|∂αx . Note that, in terms of

these operators, the local formula (1.3) for the principal symbol is given by

P =
∑
|α|≤k

Aα(x)Dα
x =⇒ σ(P )(x, ξ) =

∑
|α|=k

Aα(x)ξα.

Example 1.10. Let us compute the adjoint of the operator d : C∞(M ; Λk)→ C∞(M ; Λk+1).
Recall that a Riemannian metric gives rise to the Hodge star operator ? : Λk → Λn−k, defined
by the property that

α ∧ ?β = 〈α, β〉dVolg, α, β ∈ C∞(M ; Λk)

where dVolg ∈ C∞(M ; Λn) is the volume form, and the pairing 〈α, β〉 denotes the Hermitian
inner product on Λk induced by g. In particular dVolg = ?1, and

?(?α) = (−1)k(n−k)α, α ∈ C∞(M ; Λk). (1.6)

Note also that the L2 pairing on forms is given by (α, β) =
∫
M 〈α, β〉dVolg =

∫
M α ∧ ?β.

Now let α ∈ C∞c (M ; Λk−1) and β ∈ C∞c (M ; Λk) and consider the L2 pairing (dα, β). We
have

(dα, β) =

∫
M
dα ∧ ?β

=

∫
M

(
d(α ∧ ?β) + (−1)kα ∧ d(?β)

)
=

∫
M

(−1)k+(n−k+1)(k−1)α ∧ ?(?d?β)

using (1.6) and Stokes’ theorem (since α ∧ ?β has compact support,
∫
M d(α ∧ ?β) = 0).

Simplifying the signs shows

d∗ = (−1)nk+n+1 ? d? : C∞c (M ; Λk)→ C∞c (M ; Λk−1).

It is common convention to denote this operator as

δ := d∗ = (−1)n(k+1)+1 ? d ? . (1.7)
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The principal symbol is given by the adjoint of σ(d)(x, ξ) = iξ ∧ ·, which is the interior
product

σ(d∗)(x, ξ) = σ(d)(x, ξ)∗ = −iξ] y · ∈ HomC(Λk,Λk−1). (1.8)

Here ξ] ∈ TxM is the vector dual to ξ ∈ T ∗xM using the Riemannian product, i.e., the vector
defined by g(ξ], v) = ξ(v) for all v ∈ TxM , and ξ] y · is defined by

(ξ] y β)(v1, . . . , vk−1) = β(ξ], v1, . . . , vk−1). β ∈ C∞(M,Λk), vi ∈ TxM,

It is easily verified that

ξ] y · = (−1)nk+n+1 ? (ξ ∧ ?·) ∈ HomC(Λk,Λk−1).

Example 1.11. The (scalar) Laplacian is the operator

∆ = d∗d = − ? d ? d ∈ Diff2(M).

By identifying sections of Λ1 = T ∗M with sections of TM using the metric, this can be written
in the alternate form

∆f = div(∇f).

Indeed, the gradient operator is defined in terms of the operator ·] : T ∗M → TM by ∇f =
(df)], and the divergence is its formal adjoint. From the symbolic calculus, we may verify that

σ(∆)(x, ξ) = σ(d)(x, ξ)∗σ(d)(x, ξ) = ξ] y (ξ ∧ ·) = |ξ|2 ,

where the norm of ξ is computed with respect to the Riemannian metric: |ξ|2 = g(ξ, ξ).
More generally, the Laplacian is defined on forms by

∆ = (d+ d∗)2 = d d∗ + d∗d ∈ Diff2(M ; Λk),

(note that d2 = δ2 = 0), and likewise has principal symbol

σ(∆)(x, ξ) = ξ] y (ξ ∧ ·) + ξ ∧ (ξ] y ·) = |ξ|2 I ∈ Endx(Λk), (1.9)

where I denotes the identity map. The Laplacian is a formally self adjoint operator: ∆∗ = ∆,
as follows from the definition.

1.2 Pseudodifferential operators

Having discussed differential operators, we now want to understand their inverses. Of course,
differential operators are typically not invertible, but in the case of elliptic operators on compact
manifolds, the situation is as good as possible: namely, we will show that elliptic operators are
invertible up to finite dimensional subspaces of C∞(M).
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There are two main ways to prove this. The first, functional analytic, approach is to define
Sobolev spaces of functions/sections on M and prove direct estimates for elliptic operators
with respect to these spaces. The second approach, which we shall pursue here, is to use
pseudodifferential operators, which are an extension of the differential operators containing the
(approximate) inverses of elliptic operators, among other objects.

This second approach is a bit more elegant, but of course nothing comes for free, and
there are some necessarily technical details lurking in the proper development and definition
of pseudodifferential operators.

We will omit discussion of the construction of pseudodifferential operators on manifolds, and
instead we will simply posit their existence and key properties. (See [Alb12] for a development
of ΨDOs at a similar level to these notes.) To state these properties, it is a good idea to say
a few words about distributions first. (For a comprehensive treatment of distribution theory,
see [Hör85].)

1.2.1 Distributions on compact Riemannian manifolds

Definition 1.12. On a compact Riemannian manifold3 M , the space of distributions, de-
noted C−∞(M), is the dual space

C−∞(M) := C∞(M)∗ (1.10)

which is to say the space of continuous linear functionals T : C∞(M) → C. The topology on
C−∞(M) is the weak one, namely Tj → T in C−∞(M) if and only if Tj(φ) → T (φ) in C for
all φ ∈ C∞(M).

Recall that C∞(M) itself is topologized by a family of seminorms

‖φ‖l = sup
M

∣∣∇lφ∣∣
where ∇l denotes an appropriate derivative operator of order l (locally on Rn we may take
∇lφ =

∑
|α|≤l ∂

α
xφ).

Thus T ∈ C−∞(M) if there exists a constant C > 0 and k ∈ N such that

T (φ) ≤ C
∑
l≤k
‖φ‖k ,

and then we say that T has order k. In this case T actually defines a linear functional on
the Banach space Ck(M), and we may denote by C−k(M) the distributions of order k. (One
unfortunate consequence of this notation is the fact that C−0(M) 6= C0(M); see below.)

There is an injective map C∞(M) ↪→ C−∞(M) defined by the L2 pairing:

C∞(M) 3 u 7→ Tu ∈ C−∞(M), Tu(φ) = (u, φ) =

∫
M
uφ dVolg, (1.11)

3If M is not compact, then C−∞(M) = C∞c (M)∗ is dual to the space of smooth functions of compact
support. If M is not Riemannian, then C−∞(M) = C∞c (M ; Ω)∗ is dual to the space of smooth compactly
supported densities.
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and it can be shown that the image of C∞(M) is dense in C−∞(M), so that distributions may
always be approximated by smooth functions.

The formula (1.11) for Tu is well-defined for any integrable function u, so gives an injection

L1(M) ↪→ C−∞(M), u 7→ Tu =

∫
M
uφ dVolg. (1.12)

It is a convenient abuse of notation to write distributions as if they were functions, which
is to say we will often write

(T, φ) =

∫
M
T (x)φ(x) dVolg(x)

for the pairing of a distribution T ∈ C−∞(M) and smooth function φ ∈ C∞(M), even if T is
not of the form (1.12) (see below for examples of distributions which are not functions).

Consistent with this convention, and justified rigorously by the density of C∞(M) ⊂
C−∞(M), we may define various operations on distributions by duality:

Definition 1.13.

(a) (Multiplication by smooth functions). If T ∈ C−∞(M) and f ∈ C∞(M), the distribution
fT ∈ C−∞(M) is defined by

(fT, φ) := (T, fφ), ∀φ ∈ C∞(M).

(b) (Differentiation). If T ∈ C−∞(M) and P ∈ Diff(M), the distribution PT ∈ C−∞(M) is
defined by

(PT, φ) := (T, P ∗φ), ∀φ ∈ C∞(M).

(c) (Push-forward). If T ∈ C−∞(M) and ϕ : M → N is a smooth map of compact Rieman-
nian manifolds, then the push-forward ϕ∗T ∈ C−∞(N) is defined by

(ϕ∗T, φ) := (T, ϕ∗φ) ∀φ ∈ C∞(N).

In particular, by part (b), distributions may always be differentiated, and the action
of differential operators extends to an action Diff(M) : C−∞(M) → C−∞(M) such that
Diffk(M) : C−l(M)→ C−l−k(M).

Definition 1.14. The support,
supp(T ) ⊂M,

of T ∈ C−∞(M) is the (closure of the) set outside of which it vanishes; more precisely, p ∈M
is not in the support of T if there exists an open neighborhood U 3 p on which T vanishes,
i.e., such that (T, φ) = 0 whenever supp(φ) ∈ U .

The singular support,
sing supp(T ) ⊂M,
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of T ∈ C−∞(M) is the set outside of which the T is smooth; more precisely, p ∈M is not in the
singular support of T if there exists an open neighborhood U 3 p and a smooth χ ∈ C∞c (U)
such that χT ∈ C∞(M) ⊂ C−∞(M) coincides with the pairing of a smooth function:

(χT, φ) = (u, φ), for some u ∈ C∞c (U).

Example 1.15. Note that any (Borel) measure dµ on M defines a distribution via

dµ : φ 7→
∫
M
φdµ (1.13)

whether or not dµ is absolutely continuous with respect to the Riemannian volume form. In
particular, for any p ∈ M , the Dirac delta distribution δp ∈ C−∞(M) is the distribution
defined by the point measure:

(δp, φ) = φ(p). (1.14)

It is easy to see that δp cannot be represented by the pairing with any integrable function.
Since (1.13) and (1.14) only depend on φ and not any of its derivatives, these are distributions
of order 0. In fact, by the Riesz representation theorem (the one for measures, not for Hilbert
spaces, see [Fol13, Thm. 7.17]), the space C−0(M) of distributions of order 0 is precisely the
space of Borel measures on M .

For P ∈ Diffk(M), k ≥ 1, the distribution P δp is an example of a distribution not defined
by a measure:

(Pδp, φ) = (P ∗φ)(p),

and a theorem of Schwartz [Hör85, Thm. 2.3.4] says that any distribution supported at p is of
the form Pδp for some P ∈ Diff(M).

Exercise 1.3. Though it is not a compact manifold, consider some distributions on R. (The
crucial difference from a compact manifold is that the test functions φ are taken to have
compact support.) Show that

T (x) = |x|

is a locally integrable function, with singular support sing supp(T ) = {0}. Show that

T ′(x) = sgn(x) =

{
1 x ≥ 0,

−1 x < 0

as distributions (note that it does not matter how you define sgn(0)). Show that

T ′′(X) = sgn′(x) = 2δ0.
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The distributional sections C−∞(M ;E) of a (Hermitian) vector bundle E → M may be
defined in one of two equivalent ways; either as the space

C−∞(M ;E) = C−∞(M)⊗ C∞(M ;E)

of products of smooth sections of E with distributions on M (i.e., as the space of pairs sT ,
where s ∈ C∞(M ;E) and T ∈ C−∞(M), defined as in Definition 1.13.(a) by (sT, t) = (T, 〈s, t〉)
for t ∈ C∞(M ;E)), or the dual space

C−∞(M ;E) = C∞(M ;E)∗.

(Here we are again using the Hermitian structure on E to identify E and E∗; more generally,
C−∞(M ;E) should be defined as the dual space C∞(M ;E∗)∗.)

The previous definitions (support, singular support, multiplication by smooth functions,
action by differential operators) extend in a natural way to C−∞(M ;E), with the exception of
the push-forward, which is only well-defined as a map

ϕ∗ : C−∞(M ;ϕ∗E)→ C−∞(N ;E)

from sections of the pullback bundle ϕ∗E →M to sections of E → N .
The final point to discuss here is the Schwartz kernel theorem, which says that any linear

operator A : C∞(M)→ C−∞(N) from smooth functions on (M, g) to distributions on (N, g′)
is represented by a distributional integral kernel (aka Schwartz kernel) KA ∈ C−∞(M ×N):

(Au)(x) =

∫
M
KA(x, y)u(y)dVolg(y).

Here again we are abusing notation by writing KA as a function. The precise statement, taking
bundles into account, is the following.

Theorem 1.16 (Schwartz kernel theorem, c.f. [Hör85] Thm. 5.2.1). Let M and N be a compact
Riemannian manifolds with Hermitian vector bundles E → M and F → N . On the product
M ×N let E � F →M ×N and HOM(E,F ) = E∗ � F →M ×N be the vector bundles with
fibers

E � F(x,y) = Ex ⊗ Fy and HOM(E,F )(x,y) = Hom(Ex, Fy) = E∗x ⊗ Fx respectively.

Then for every linear operator A : C∞(M ;E)→ C−∞(N ;F ), there exists a unique distri-
bution KA ∈ C−∞(M × N ; HOM(E,F )) with the property that for every u ∈ C∞(M ;E) and
v ∈ C∞(N ;F ∗),

(Au, v) = (KA, u� v)

where u� v ∈ C∞(N ×M ;E � F ∗) is the section given by (u� v)(x, y) = u(x)⊗ v(y).

Remark. It is a common abuse of notation to confuse the operator A with its Schwartz kernel,
and write

Au =

∫
M
A(x, y)u(y) dVolg(y).
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1.2.2 Pseudodifferential operators

We may now discuss the algebra, Ψ(M), of pseudodifferential operators on M , ignoring vector
bundles on the first pass.

Proposition 1.17. Let M be a compact manifold. The set

Ψ(M) =
⋃
r∈R

Ψr(M)

of pseudodifferential operators on M , defined by certain Schwartz kernels in C−∞(M ×M)
with singular support contained in the diagonal ∆M = {(x, x) : x ∈M} ⊂ M ×M , has the
following properties:

(a) (Mapping properties). Each P ∈ Ψr(M) defines an operator

P : C∞(M)→ C∞(M),

and hence by duality

P : C−∞(M)→ C−∞(M).

(b) (Filtered algebra). If s ≤ r then Ψs(M) ⊆ Ψr(M) and Ψs(M) ◦ Ψr(M) ⊂ Ψs+r(M), as
operators on C∞(M). Thus Ψ(M) has the structure of a filtered (over R) algebra.

(c) (Principal symbols). For each r, there is a principal symbol map

σr : Ψr(M)→ C∞(S∗M) (1.15)

such that σr+s(A ◦B) = σr(A)σs(B) and σ(A∗) = σ(A)∗ (in other words, σr : Ψr(M)→
C∞(S∗M) is a ∗-homomorphism), and the symbol sequence

Ψr−1(M) ↪−→ Ψr(M)
σ−→ C∞(S∗M) (1.16)

is exact.

(d) (Extension of differential operators). For each k ∈ N, Diffk(M) ⊂ Ψk(M), and the
principal symbol (1.15) extends the one defined for differential operators.

(e) (Smoothing operators). The subspace Ψ−∞(M) =
⋂
r∈R Ψr(M), which is an ideal, is

characterized by the operators with smooth Schwartz kernels:

Ψ−∞(M) = C∞(M ×M), (1.17)

which is equivalent to the smoothing property:

A ∈ Ψ−∞(M) ⇐⇒ A : C−∞(M)→ C∞(M). (1.18)
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(f) (Asymptotic completeness). For any decreasing, unbounded sequence (rj) in R, and
sequence of operators Aj ∈ Ψrj (M), there exists an operator

A ∼
∞∑
j=1

Aj ∈ Ψr1(M), (1.19)

which is unique up to terms in Ψ−∞(M), where the asymptotic notation ∼ means that
for each N ,

A− (A1 + · · ·+AN ) ∈ ΨrN−1(M). (1.20)

Remarks.

• By the Schwartz kernel theorem (Theorem 1.16) it is automatic that P ∈ Ψ(M) maps
smooth functions to distributions; the novelty of part (a) is that Pu is actually smooth if
u is. This follows from the fact that the singularities of P ∈ C−∞(M×M) are supported
along the diagonal, and are of a special, “conormal” type. A slightly stronger statement,
from which (a) follows, is the pseudolocality of Ψ(M), which says that

sing supp(Pu) ⊆ sing supp(u), ∀ P ∈ Ψ(M), u ∈ C∞(M).

• The analogous property of locality, that supp(Pu) ⊆ supp(u), holds for differential op-
erators but is false in general for pseudodifferential ones. This in turn follows from the
characterization of the subset Diff(M) ⊂ Ψ(M) of differential operators as those pseu-
dodifferential operators with Schwartz kernels supported at the diagonal in M ×M (i.e.
actually vanishing outside of the diagonal).

For example, it is easy to see that the Schwartz kernel of the identity operator, I ∈
Diff0(M), is represented by the Dirac delta distribution of the diagonal, defined by the
property

u(x) =

∫
M
δ(x, y)u(y) dVolg(y),

for each fixed x ∈M .

• The smoothing property (1.18) follows from (1.17) and general distribution theory. Es-
sentially, if P (x, y) is smooth in both x and y, then for a fixed distribution u(y), the
pairing

∫
M P (x, y)u(y) dVolg(y) makes sense for each x ∈M and varies smoothly with x.

• We initially defined the symbol of a differential operator as a function on T ∗M (rather
than S∗M) which was homogeneous along the fibers. There is a similar definition for
pseudodifferential operators, though since smoothness at the zero section and homogene-
ity of order r ∈ R \ N are at odds, it is only required that σr(P )(x, ξ) be homogeneous
for large ξ; thus we may regard

σr(P )(x, ξ) ∈ C∞(T ∗M), σr(P )(x, tξ) = trσr(P )(x, ξ) ∀t, |ξ| ≥ 1.
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• In the interest of full disclosure, we should note that in requiring the principal symbol
to be homogeneous on T ∗M , or equivalently, to be well-defined on S∗M , we are only
considering what are sometimes called classical pseudodifferential operators. There is
in fact a slightly larger algebra of pseudodifferential operators whose symbols are only
required to satisfy symbol estimates of the form

σr(P ) ∈ Sr(T ∗M) ⇐⇒
∣∣∣∂αx ∂βξ σr(P )(x, ξ)

∣∣∣ ≤ Cα,β(1 + |ξ|2)(r−|β|)/2,

for all α, β ∈ Nn. In this larger algebra the symbol sequence takes the proper form

Ψr−1(M) ↪−→ Ψr(M)
σ−→ Sr(M)/Sr−1(M).

However, the classical operators (of integer order, in fact) will suffice for the applications
we will consider.

The properties (c) and (f) are the keys to doing constructions in the pseudodifferential
algebra. We often want to solve some kind of ‘algebraic’ equation for a pseudodifferential
operator Q, for instance the equation PQ = I given a fixed (pseudo)differential operator P ,
which we will address shortly. The property (c) says that we can consider the associated
equation for the principal symbol σ(Q), which is vastly simplified by the fact that the symbols
are just multiplication operators (and, in the present case, commutative). Provided we can
solve the equation for the principal symbol, then the homomorphism and surjectivity properties
of σ say that we can then solve the original operator equation modulo Ψr0(M) for some finite
lower order r0; in other words we get a Q0 which solves the equation modulo some error
term R0 ∈ Ψr0(M). We then set out to remove the error term using the principal symbol
calculus to obtain an improved solution Q0 + Q1, which solves the equation modulo an error
R1 ∈ Ψr1(M) for some even lower order r1, and so on. Proceeding inductively, we develop
a series Q0 + Q1 + · · · , which can be asymptotically summed by (f) to obtain a solution Q,
modulo an error term in the residual ideal Ψ−∞(M).

Note that this is the best we can do using only the properties above. There is no principal
symbol for operators in Ψ−∞(M), so we cannot really solve away or control these terms, and
asymptotic sums as in (f) are only well-defined up to terms in Ψ−∞(M). To put it another way,
we can only use the tools above to solve equations in the quotient algebra Ψ(M)/Ψ−∞(M).
Fortunately, the extremely nice properties (e) of Ψ−∞(M) mean that this is good enough for
many purposes, and in other cases we may be able to use different tools (e.g., from functional
analysis) to remove error terms in Ψ−∞(M).

Before embarking on these ideas in earnest, let us now reintroduce vector bundles into the
picture, to obtain the following generalization of Proposition 1.17.

Proposition 1.18. Let M be a compact manifold, and E,F →M Hermitian vector bundles.
There exists a set

Ψ(M ;E,F ) =
⋃
s∈R

Ψr(M ;E,F )

defined by certain Schwartz kernels in C−∞
(
M×M ; HOM(E,F )

)
with the following properties:
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(a) Each P ∈ Ψr(M ;E,F ) defines operators

P : C∞(M ;E)→ C∞(M ;F ), (1.21)

P : C−∞(M ;E)→ C−∞(M ;F ). (1.22)

(b) If s ≤ r then Ψs(M ;E,F ) ⊆ Ψr(M ;E,F ) and if Q ∈ Ψs(M ;F,G) and P ∈ Ψr(M ;E,F )
then Q ◦ P ∈ Ψs+r(M ;E;G).

(c) For each r ∈ R, there is a principal symbol map

σr : Ψr(M ;E,F )→ C∞
(
S∗M,Hom(E,F )

)
(1.23)

such that σs+r(Q ◦ P ) = σs(Q) ◦ σr(P ) ∈ C∞
(
S∗M ; Hom(E,G)

)
and σ(P ∗) = σ(P )∗ ∈

C∞
(
S∗M ; Hom(F,E)

)
. The symbol sequence

Ψr−1(M ;E,F ) ↪−→ Ψr(M ;E,F )
σ−→ C∞

(
S∗M ; Hom(E,F )

)
(1.24)

is exact.

(d) For each k ∈ N, Diffk(M ;E,F ) ⊂ Ψk(M ;E,F ), and the principal symbol (1.23) extends
the one defined for differential operators.

(e) The subspace Ψ−∞(M ;E,F ) =
⋂
r∈R Ψr(M ;E,F ) is characterized by Ψ−∞(M ;E,F ) =

C∞
(
M ×M ; HOM(E,F )

)
which is equivalent to the mapping property

R ∈ Ψ−∞(M ;E,F ) ⇐⇒ R : C−∞(M ;E)→ C∞(M ;F ). (1.25)

(f) For any sequence of operators Aj ∈ Ψrj (M ;E,F ) such that rj ↘ −∞, there exists an
operator

A ∼
∞∑
j=1

Aj ∈ Ψr1(M ;E,F ), (1.26)

which is unique up to terms in Ψ−∞(M ;E,F ).

1.3 Ellipticity

Definition 1.19. An operator P ∈ Ψr(M ;E,F ) is elliptic if its principal symbol is invertible:

P elliptic ⇐⇒ σr(P ) ∈ C∞
(
S∗M ; Iso(E,F )

)
⊂ C∞

(
S∗M ; Hom(E,F )

)
.

Remark. If we regard σr(P ) as a section on T ∗M rather than S∗M , then the equivalent
statement is that σr(P )(x, ξ) be invertible for all |ξ| ≥ 1.
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Example 1.20. Of the differential operator examples we have considered thus far, d ∈
Diff1(M ; Λk; Λk+1) and δ ∈ Diff1(M ; Λk+1,Λk) are not elliptic, as the principal symbols (1.4)
and (1.8) are easily seen to have nontrivial kernel for each ξ ∈ S∗xM .

On the other hand, it follows from (1.9) that the Laplacians ∆ ∈ Diff2(M ; Λk) are elliptic
with

σ(∆)−1(x, ξ) = |ξ|−1 I ∈ C∞(S∗M ; Aut(Λk)), ξ 6= 0.

Likewise, if we consider the Hodge-de Rham operator d + δ ∈ Diff1(M ; Λ), where Λ =⊕n
k=0 Λk is the total exterior product bundle, then it follows from (d+ δ)2 = ∆ ∈ Diff2(M ; Λ)

that d+ δ is an elliptic operator of order 1.

1.3.1 Parametrices

We can invert elliptic operators modulo Ψ−∞ using the properties (a)–(f) of Proposition 1.18.
Such an (approximate) inverse is called a parametrix.

Proposition 1.21. Let P ∈ Ψr(M ;E,F ) be an elliptic operator. Then there exists a parametrix
Q ∈ Ψ−r(M ;F,E), such that

QP − I = R ∈ Ψ−∞(M ;E), and (1.27)

PQ− I = R′ ∈ Ψ−∞(M ;F ). (1.28)

In the first equation I denotes the identity operator in Ψ0(M ;E) and in the second equation I
denotes the identity operator in Ψ0(M ;F ).

An operator Q such that only (1.27) holds is called a left parametrix, and an operator such
that only (1.28) holds is called a right parametrix.

Proof. We will first prove the existence of a left parametrix. By the definition of ellipticity,
σr(P ) ∈ C∞

(
S∗M ; Iso(E,F )

)
is invertible, and then by surjectivity of the symbol in (1.24)

there exists Q0 ∈ Ψ−r(M ;F,E) such that

σ−r(Q0) = σr(P )−1 ∈ C∞
(
S∗M ; Iso(F,E)

)
.

By the composition property it follows that Q0P ∈ Ψ0(M ;E), and that

σ0(Q0P ) = σ−r(Q0)σr(P ) = I ∈ C∞
(
S∗M ; End(E)

)
.

Note that it follows from the homomorphism property of the principal symbol map that
the principal symbol of the identity operator I ∈ Ψ0(M ;E) is the identity: σ0(I) = I ∈
C∞

(
M ; End(E)

)
; in particular, the principal symbols of Q0P ∈ Ψ0(M ;E) and I ∈ Ψ0(M ;E)

agree, so by exactness of (1.24) it follows that

Q0P − I = R0, for some R0 ∈ Ψ−1(M ;E).
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Proceeding by induction, suppose that we have obtained operators Qi ∈ Ψ−r−i(M ;F,E)
for i = 0, . . . , N such that

(Q0 + · · ·+QN )P − I = RN ∈ Ψ−N−1(M ;E), (1.29)

and consider the problem of findingQN+1 ∈ Ψ−r−N−1(M ;E) such that (Q0+· · ·+QN+1)P−I ∈
Ψ−N−2(M ;E). Expanding out, we find that such a QN+1 must satisfy

RN +QN+1P = 0 mod Ψ−N−2(M ;E).

In particular, it suffices to solve the associated principal symbol equation

σ−N−1(RN ) + σ−r−N−1(QN+1)σr(P ) = 0 ∈ C∞
(
S∗M ; End(E)

)
.

Using invertibility of σr(P ) again, it follows that we may take QN+1 such that

σ(QN+1) = −σ(RN )σ(P )−1 ∈ C∞
(
S∗M ; Hom(F,E)

)
,

and then (1.29) holds with N replaced by N + 1, and the induction is complete.

Using Proposition 1.18.(f), there exists Q such that

Q ∼
∞∑
i=0

Qi ∈ Ψ−r(M ;F,E),

and the asymptotic summation property (1.20) and (1.29) together imply that QP − I ∈
Ψ−N (M ;E) for every N , which is to say that (1.27) holds. Note that, by the ideal property
of Ψ−∞(M ;E), it follows that another operator Q′ ∈ Ψ−r(M ;F,E) is also a left parametrix if
and only if Q−Q′ ∈ Ψ−∞(M ;F,E).

A similar procedure can be used to construct a right parametrix Q′ ∈ Ψ−r(M ;F,E), such
that PQ′ − I = R′ ∈ Ψ−∞(M ;F ). However, we can use the pseudodifferential properties
to show that Q − Q′ ∈ Ψ−∞(M ;F,E). Indeed, consider the composite operator QPQ′ ∈
Ψ−r(M ;F,E). It follows that

QPQ′ = (I −R)Q′ = Q′ mod Ψ−∞(M ;F,E),

and likewise

QPQ′ = Q(I −R′) = Q mod Ψ−∞(M ;F,E).

Thus Q − Q′ = 0mod Ψ−∞(M ;F,E) and it follows that Q is also a right parametrix (or
equivalently, that Q′ is also a left parametrix).

Exercise 1.4. Show that if P ∈ Ψr(M ;E,F ) is elliptic if and only if P ∗ ∈ Ψr(M ;F,E) is
elliptic, and Q is a parametrix for P if and only if Q∗ is a parametrix for P ∗.
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1.3.2 Elliptic regularity

It is from the existence of a parametrix that we deduce the two most important properties of
an elliptic operator P . The first says that solutions, or elements of the distributional nullspace
Null(P ) = {u ∈ C−∞(M ;E) : Pu = 0} are actually smooth, i.e., Null(P ) ⊂ C∞(M ;E) ⊂
C−∞(M ;E). More generally, we have the following:

Proposition 1.22 (Elliptic regularity). Let P ∈ Ψr(M ;E,F ) be elliptic and suppose u ∈
C−∞(M ;E) satisfies

Pu = f ∈ C∞(M ;F ). (1.30)

Then it follows that u is actually smooth: u ∈ C∞(M ;E).

Proof. Let Q ∈ Ψ−r(M ;F,E) be a parametrix as in Proposition 1.21. Using (1.27) and (1.30),
we have

Qf = QPu = (I +R)u = u+Ru =⇒ u = Qf −Ru.

The mapping properties (1.21) and (1.25) imply that both Qf and Ru are actually smooth,
hence u is smooth.

Remark. An equivalent statement is that, while pseudodifferential operators satisfy the general
pseudolocality property sing supp(Pu) ⊆ sing supp(u), elliptic operators satisfy the stronger
property that sing supp(Pu) = sing supp(u).

1.3.3 Fredholm property of elliptic operators

The second, and perhaps most important, property of elliptic operators on compact manifolds
is that they are Fredholm, which essentially means invertible off of finite dimensional spaces.
This is usually stated as a property of operators between Hilbert spaces such as L2(M), but
since pseudodifferential operators of positive order (hence all interesting differential operators)
are unbounded on L2(M), proceeding entirely via this route would require us to first define
Sobolev spaces on M . While we will eventually want to do so, one of the advantages of
using the pseudodifferential theory is that we can define and prove the Fredholm property of
elliptic operators acting directly on smooth sections (with a small excursion through bounded
operators on L2(M)).

Definition 1.23. Let M be a compact Riemannian manifold with E,F →M Hermitian vector
bundles.

A bounded operator A : L2(M ;E) → L2(M ;F ) (or more generally between any pair of
Hilbert spaces) is Fredholm if

(i) Null(A) and Ran(A)⊥ =
{
v ∈ L2(M ;F ) : (Au, v) = 0 ∀ u ∈ L2(M ;E)

}
are finite dimen-

sional, and

(ii) Ran(A) is closed, hence there is an orthogonal direct sum decomposition

L2(M ;F ) = Ran(A)⊕ Ran(A)⊥. (1.31)
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We say an operator A : C∞(M ;E)→ C∞(M ;F ) is Fredholm if

(i) Null(A) ⊂ C∞(M ;E) and

Ran(A)⊥ = {v : (Au, v) = 0, ∀u ∈ C∞(M ;E)} ⊂ C∞(M ;F )

are finite dimensional, and

(ii) There is a direct sum decomposition

C∞(M ;F ) = Ran(A)⊕ Ran(A)⊥ (1.32)

which is orthogonal with respect to the L2 pairing.

Note that in a Hilbert space, the statement that Ran(A) is closed and (1.31) are equivalent,
whereas (1.32) implies that Ran(A) is closed but not necessarily vice versa, so we require (1.32)
as part of the definition. This definition of Fredholmness on smooth function spaces is not
standard.

The point is that solvability for a Fredholm operator is quite close to the finite dimensional
situation. Namely, the equation Au = v is solvable if and only if v is orthogonal to the finite
dimensional space Ran(A)⊥ (which is a finite number of conditions), and then the solutions
are all of the form u = u0 +u1 for u0 any particular solution and u1 some element of the finite
dimensional nullspace Null(A).

Exercise 1.5. Prove that, in either the L2 case or the C∞ case, Ran(A)⊥ = Null(A∗), where
A∗ is the true adjoint in the L2 case, or the (formal) adjoint with respect to the L2 pairing in
the smooth case.

Exercise 1.6. Prove that A is Fredholm as an operator on L2 if and only if A∗ is Fredholm.
As we have currently defined it, this is not necessarily true for a Fredholm operator on smooth
sections.

Our strategy is to first prove that an operator of the form A = I +R, R ∈ Ψ−∞(M ;E) is
Fredholm in either sense, and then show that this implies that any elliptic pseudodifferential
operator is Fredholm in the smooth sense.

Consider the inclusions

C∞(M ;E) ↪→ L2(M ;E) ↪→ C−∞(M ;E)

and let R ∈ Ψ−∞(M ;E). Since R maps the rightmost space to the leftmost one, we may
regard it as a bounded operator

R : L2(M ;E)→ L2(M ;E). (1.33)

We will make use of the following key result.
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Lemma 1.24 (Compactness of smoothing operators). For any R ∈ Ψ−∞(M ;E) as above,
the extension (1.33) is a compact operator, meaning the image of any bounded set is precom-
pact. Equivalently, if {uj} is a bounded sequence in L2(M ;E), then {Ruj} has a convergent
subsequence.

Proof. Recall the Arzela-Ascoli theorem ([Fol13, Thm. 4.43]), which says that on a compact
space M , any subset of C0(M) which is bounded and equicontinuous is precompact, i.e., a
bounded sequence (uj) for which, given any ε > 0, there exists a δ > 0 such that

d(x, x′) < δ =⇒
∣∣uj(x)− uj(x′)

∣∣ < ε ∀j,

(the key point being that δ can be chosen uniformly for all j) has a convergent subsequence.
In particular, since uniform bounds on derivatives imply equicontinuity, the inclusion I :
C1(M) ↪→ C0(M) is compact whenever M is a compact manifold.

Since R : L2(M ;E) to L2(M ;E) factors through the continuous inclusions C1(M ;E) ⊂
C0(M ;E) ⊂ L2(M ;E) it follows that (1.33) is compact.

Lemma 1.25. Let R ∈ Ψ−∞(M ;E). Then A = I−R is a bounded operator on L2(M ;E) and
on C∞(M ;E), and is Fredholm in either sense.

Proof. First consider Null(A), and note that Au = (I−R)u = 0 if and only if u = Ru, so as in
our elliptic regularity result it follows that Null(A) =

{
u ∈ L2 : Ru = 0

}
= {u ∈ C∞ : Ru = 0}.

Let B = {u ∈ Null(A) : ‖u‖L2 ≤ 1}. It follows from Lemma 1.24 that B = R(B) ⊂ L2(M ;E)
is compact (it is closed and precompact). But any subspace of L2(M ;E) with a compact unit
ball is finite dimensional; indeed, an infinite orthonormal basis {ei : i ∈ N} would have to have
a convergent subsequence, which is impossible. We conclude that Null(A) is finite dimensional.

Next we show that Ran(A) ⊂ L2(M ;E) is closed, so suppose uj is a sequence in L2(M ;E)
with vj := Auj → v in L2. We want to show that v = Au for some u ∈ L2(M ;E). By the
finite dimensionality of Null(A), we can suppose without loss of generality that uj ∈ Null(P )⊥

for each j. Since A = I −R, we have

uj = vj +Ruj . (1.34)

Consider first the case that {uj : j ∈ N} is bounded in L2(M ;E). By Lemma 1.24, (Ruj)
has a convergent subsequence in L2(M ;E), and since vj converges, it follows from (1.34) that uj
has a convergent subsequence; passing to this subsequence we may assume uj → u ∈ L2(M ;E).
It follows by continuity that Au = v, so v ∈ Ran(A).

Now suppose that {uj} is unbounded in L2, in particular, after passing to a subsequence, we
may assume ‖uj‖L2 → ∞. Then the normalized sequence u′j =

uj
‖uj‖ in Null(A)⊥ is bounded,

and arguing as above, we conclude that u′j has a convergent subsequence, say u′j → u′ ∈
L2(M ;E). On the other hand, from the fact that Au′j = ‖uj‖−1 vj → 0, hence u′ ∈ Null(A) it
follows that

u′ ∈ Null(A) ∩Null(A)⊥ = {0} ,

which contradicts the fact that ‖u′‖L2 = ‖u′j‖L2 = 1. We conclude that Ran(A) is closed.
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Finally, Ran(A)⊥ = Null(A∗), where A∗ = I − R∗ with R∗ ∈ Ψ−∞(M ;E), so the same
argument as above shows that this space is finite dimensional. We conclude that A is Fredholm
on L2.

To see that A is Fredholm on C∞, note that Null(A) and Ran(A)⊥ = Null(A∗) are the same
finite dimensional spaces as in the L2 case by regularity, so it suffices to prove the decomposition
(1.32). Let v ∈ C∞(M ;E) and consider the (unique) L2 orthogonal decomposition

v = Au0 + v1, u0 ∈ L2(M ;E), v1 ∈ Ran(A)⊥ = Null(A∗). (1.35)

Since v1 ∈ Null(A∗) is actually smooth, it follows that Au0 ∈ C∞(M ;E), and then that
u0 = Au0 +Ru0 ∈ C∞(M ;E) by the smoothing property of R.

Proposition 1.26. Let P ∈ Ψr(M ;E,F ) be an elliptic operator. Then P : C∞(M ;E) →
C∞(M ;F ) is Fredholm.

Proof. Let Q be a parametrix for P , with

QP = I −R, R ∈ Ψ−∞(M ;E), (1.36)

PQ = I − S, S ∈ Ψ−∞(M ;F ). (1.37)

It follows from (1.36) that Null(P ) ⊆ Null(QP ) = Null(I − R), which is finite dimensional
by Lemma 1.25, hence Null(P ) is finite dimensional. Likewise, from (1.37), it follows that
Ran(P ) ⊇ Ran(PQ) = Ran(I − S), so Ran(P )⊥ ⊆ Ran(I − S)⊥ is a subspace of a finite
dimensional space, hence finite dimensional.

To prove the orthogonal direct sum decomposition C∞(M ;F ) = Ran(P ) ⊕ Ran(P )⊥, let
v ∈ C∞(M ;F ) and let

v = v0 + v1, v0 ∈ Ran(I − S), v1 ∈ Ran(I − S)⊥,

be the smooth orthogonal decomposition afforded by the smooth Fredholm property of I − S.
Now v1 is in a finite dimensional space, and so there is a unique orthogonal decomposition

v1 = v′0 + v′1, v′0 ∈ Ran(P ) ∩ Ran(I − S)⊥, v′1 ∈ Ran(P )⊥ ∩ Ran(I − S)⊥.

Since Ran(I − S) ⊆ Ran(P ), it follows that

v = (v0 + v′0) + v′1, (v0 + v′0) ∈ Ran(P ), v′1 ∈ Ran(P )⊥

is a unique orthogonal decomposition.

One consequence of the Fredholm property is the existence of a generalized inverse.
Namely, if A : C∞(M ;E)→ C∞(M ;F ) is Fredholm as in Definition 1.23, Then we may define
G : C∞(M ;F )→ C∞(M ;E) by

Gv =

{
u : Au = v, u ∈ Null(A)⊥, v ∈ Ran(A),

0, v ∈ Null(A∗) = Ran(A)⊥.
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Note the requirement that u ∈ Null(A)⊥ means such a u is unique, so G is well-defined, and

AG = I −ΠNull(A∗), GA = I −ΠNull(A)

where ΠNull(A) is the orthogonal projection from C∞(M ;E) onto Null(A), which can be written
as

ΠNull(A)u =
N∑
j=1

(uj , u)L2 uj

for an orthonormal basis {uj : j = 1, . . . , N} of Null(A), and similarly for ΠNull(A∗). In partic-
ular, the Schwartz kernel

ΠNull(A)(x, y) =

N∑
j=1

uj(x)u∗j (y) ∈ C∞
(
M ×M ; HOM(E,E)

)
is smooth, hence the projections ΠNull(A), ΠNull(A∗) are in Ψ−∞(M ;E) and Ψ−∞(M ;F ), re-
spectively.

Proposition 1.27. Let P ∈ Ψr(M ;E,F ) be an elliptic pseudodifferential operator. Then
the generalized inverse of P is a pseudodifferential operator. In other words there exists a
parametrix

G ∈ Ψ−r(M ;F,E) : C∞(M ;F )→ C∞(M ;E), s.t.

GP = I −ΠNull(P ), PG = I −ΠNull(P ∗).

Remark. One way to read this result is to say that, among the various parametrices for P ,
there is a best one, given by the generalized inverse.

Proof. Let Q ∈ Ψ−r(M ;F,E) be any pseudodifferential parametrix, with QP − I = R ∈
Ψ−∞(M ;E) and PQ − I = R′ ∈ Ψ−∞(M ;F ). Writing the operators GPQ and QPG in two
different ways gives

Q−ΠNull(P )Q = GPQ = G+GR′,

Q−QΠNull(P ∗) = QPG = G+RG.

From the first equation we can write G = Q−ΠNull(P )Q−GR′ and plugging this into the term
RG in the second equation gives

G = Q−QΠNull(P ∗) −R(Q−ΠNull(P )Q−GR′)
= Q−QΠNull(P ∗) −RQ+RΠNull(P )Q−RGR′.

All of these terms are evidently pseudodifferential except the last one, but this has the property
that

RGR′ : C−∞(M ;F )→ C∞(M ;E),

and this is equivalent to RGR′ ∈ Ψ−∞(M ;F,E) by Proposition 1.18.(e). Thus in fact

G = Q− S ∈ Ψ−r(M ;F,E),

S = QΠNull(P ∗) +RQ−RΠNull(P )Q+RGR′ ∈ Ψ−∞(M ;F,E).
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With the generalized inverse at hand, we can also make a “Fredholm” statement about an
elliptic operator acting on distributions:

Proposition 1.28. Let P ∈ Ψr(M ;E,F ) be elliptic. Then there are decompositions

C−∞(M ;E) = Ran(P ∗)⊕Null(P ), C−∞(M ;F ) = Ran(P )⊕Null(P ∗),

in the sense that every distribution u ∈ C−∞(M ;E) has a unique decomposition u = u0 +
u1 with u0 ∈ Null(P ) and u1 ∈ P ∗

(
C−∞(M ;F )

)
, and similarly for v ∈ C−∞(M ;F ). The

subspaces Null(P ) and Null(P ∗) are finite dimensional and spanned by smooth sections, and P
is an isomorphism from Ran(P ∗) to Ran(P ), with inverse G ∈ Ψ−r(M ;F,E) as constructed
above.

Proof. The decompositions come from the operator equations4

I = P ∗G∗ + ΠNull(P ) = GP + ΠNull(P ) : C−∞(M ;E)→ C−∞(M ;E), and

I = PG+ ΠNull(P ∗) = G∗P ∗ + ΠNull(P ∗) : C−∞(M ;F )→ C−∞(M ;F ),

which continue to hold on distributions by continuity from smooth functions. Thus u ∈
C−∞(M ;E) can be written

u = u0 + u1 := ΠNull(P )u+ P ∗G∗u

and likewise for v ∈ C−∞(M ;F ).
To see that the decomposition is unique, suppose u = u′0 +u′1, with Pu′0 = 0 and u′1 = P ∗v1

for some v1. Let φ ∈ C∞(M ;E) be an arbitrary smooth test function and note

(u, φ) = (u′0 + u′1, φ)

= (u′0 + u′1, P
∗G∗φ+ ΠNull(P )φ)

= (u′0, P
∗G∗φ)︸ ︷︷ ︸

=0

+(u′0,ΠNull(P )φ) + (u′1, GPφ) + (u′1,ΠNull(P )φ)︸ ︷︷ ︸
=0

It follows that

(u′0, φ) = (u′0,ΠNull(P )φ) = (u,ΠNull(P )φ) = (ΠNull(P )u, φ), and

(u′1, φ) = (u′1, GPφ) = (u,GPφ) = (P ∗G∗u, φ),

whence u′0 = ΠNull(P )u and u′1 = P ∗G∗u.

1.4 Hodge Theory

We can now apply our results on elliptic operators to prove the celebrated Hodge theorem for de
Rham cohomology. Later on we will discuss the generalization to arbitrary elliptic complexes.

4 Note that P ∗G∗ = GP since both equal I −ΠNull(P ), and similarly PG = G∗P ∗.
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Let M be a compact Riemannian manifold and for notational convenience throughout this
section, denote by

Ωk(M) = C∞(M ; Λk)

the space of smooth k-forms. Recall that the de Rham complex is the infinite dimensional chain
complex

Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)

with de Rham cohomology spaces

Hk
dR(M ;R) = Hk(Ω•, d) = Null(d : Ωk → Ωk+1)/Ran(d : Ωk−1 → Ωk), k = 0, . . . , n.

Recall that a form u such that du = 0 is said to be closed, while if u = dv then u is said to be
exact. Thus Hk

dR(M ;R) is the quotient of the space of closed k-forms by the exact k-forms.

With respect to the Riemannian structure on M , we have, for each degree k, the adjoint
operator

δ = d∗ = (−1)n(k+1)+1 ? d? : Ωk(M)→ Ωk−1(M)

as introduced in Example 1.10, and the Laplacian

∆ = (d+ δ)2 = dδ + δd : Ωk(M)→ Ωk(M)

as introduced in Example 1.11.

Definition 1.29. A form u ∈ Ωk(M) is coclosed if δu = 0, and harmonic if ∆u = 0. The
subspace of harmonic k forms is denoted

H k(M) := Null(∆) ⊂ Ωk(M).

Since ∆ ∈ Diff2(M ; Λk) is an elliptic operator, it follows from Proposition 1.26 that
each H k(M) is finite dimensional. The main result of Hodge theory says that H k(M) ∼=
Hk

dR(M ;R), for each k, or equivalently, that each cohomology class has a unique harmonic
representative.

Lemma 1.30. A form is harmonic if and only if it is both closed and coclosed:

∆u = 0 ⇐⇒ du = 0, δu = 0.

Proof. The ‘if’ direction is clear. For the converse, suppose that ∆u = 0. Then

0 = (∆u, u) = (dδu, u) + (δdu, u) = ‖δu‖2L2 + ‖du‖2L2 ,

from which it follows that du = 0 and δu = 0.
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Lemma 1.31. Within Ωk(M), the spaces H k(M), Ran(d) = d(Ωk−1) and Ran(δ) = δ(Ωk+1)
are pairwise orthogonal. Furthermore, d is injective on δ(Ωk+1) and δ is injective on d(Ωk−1).

Proof. Let u0 ∈H k(M), v ∈ Ωk−1(M) and w ∈ Ωk+1. Then

(u0, dv) = (δu0, v) = 0, (u0, δw) = (du0, w) = 0, and (dv, δw) = (d2v, w) = 0,

which establishes the first claim. For the second, note that d(δw) = 0 implies

0 = (dδw,w) = ‖δw‖2 =⇒ δw = 0,

and similarly δ(dv) = 0 implies

0 = (δdv, v) = ‖dv‖2 =⇒ dv = 0.

Proposition 1.32 (Hodge decomposition). For each k, there is an orthogonal decomposition

Ωk(M) = H k(M)⊕ d(Ωk−1)⊕ δ(Ωk+1),

i.e., each u ∈ Ωk(M) has a unique expression u = u0 + u1 + u2 with u0 ∈ H k(M), u1 = dv
and u2 = δw.

Remark. Note that v and w are not necessarily unique, but the terms in u = u0 + dv+ δw are
unique.

Proof. The Laplacian ∆ is an elliptic operator which is self-adjoint—in particular Null(∆∗) =
Null(∆) = H ∗(M)—so from Proposition 1.26 it follows that

Ωk(M) = H k(M)⊕∆(Ωk).

From the definition of ∆, it follows that ∆(Ωk) = dδ(Ωk) + δd(Ωk), meaning each term in the
former space can be written as a sum of terms in the latter two, but from Lemma 1.31 these
latter two spaces are independent and orthogonal, thus

Ωk(M) = H k(M)⊕ dδ(Ωk)⊕ δd(Ωk). (1.38)

Finally, consider the range d(Ωk−1). Since this is orthogonal to the first and last summands
in (1.38) by Lemma 1.31, we must have d(Ωk−1) ⊆ dδ(Ωk), and since the opposite inclusion
obviously holds, d(Ωk−1) = dδ(Ωk). Similarly δ(Ωk+1) = δd(Ωk).

Theorem 1.33. For each k, there is an isomorphism

H k(M) ∼= Hk
dR(M ;R), u0 7→ [u0].

In particular the cohomology spaces Hk
dR(M ;R) are finite dimensional, and each class has a

unique harmonic representative.
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Proof. If u0 ∈ H k(M), then du0 = 0 by Lemma 1.30, so the map u0 7→ [u0] is well-defined.
To show it is injective, suppose u0 = dv for some v. Since u0 and dv are orthogonal by
Lemma 1.31, it follows that u0 = 0.

To show the map is surjective, consider an arbitrary class [u] ∈ Hk
dR(M ;R) with represen-

tative u. By Proposition 1.32 this has an expression

u = u0 + dv + δw, u0 ∈H k(M).

Since u is closed it follows that du = dδw = 0, and then by Lemma 1.31 we must have δw = 0,
so in fact

u = u0 + dv,

and therefore [u] = [u0] for some u0 ∈H k(M).

Remark. Another way to view the Hodge theorem is as follows: for each k, write

Ωk(M) = Ωk
0(M)⊕ Ωk

+(M), Ωk
0(M) = H k(M), Ωk

+(M) = d(Ωk−1)⊕ δ(Ωk+1).

It follows easily that these are subcomplexes (i.e., d preserves the splittings). Moreover, (Ω•0, d)
is a trivial complex (d = 0), hence its cohomology spaces are the same as the chain spaces,
while (Ω•+, d) is an exact complex (the kernel of d on Ωk

+ is precisely d(Ωk−1), which is equal

to the image of d on Ωk−1
+ ), hence it has vanishing cohomology.

1.4.1 Distributional Hodge theory

We can also use the elliptic theory to get a Hodge theorem for distributional de Rham coho-
mology, which is the cohomology of the complex

C−∞(M ; Λ0)
d−→ C−∞(M ; Λ1)

d−→ · · · d−→ C−∞(M ; Λn), (1.39)

with adjoint complex

C−∞(M ; Λ0)
δ←− C−∞(M ; Λ1)

δ←− · · · δ←− C−∞(M ; Λn).

Proposition 1.34. For each k, there is a unique decomposition

C−∞(M ; Λk) = H k(M)⊕ d
(
C−∞(M ; Λk−1)

)
⊕ δ
(
C−∞(M ; Λk+1)

)
and H k(M) 3 u0 7→ [u0] defines an isomorphism between H k(M) and the degree k cohomology
space of the complex (1.39).

Proof. The proof is largely the same. From Proposition 1.28, we obtain the decomposition
C−∞(M ; Λk) = H k(M) ⊕ ∆(C−∞(M ; Λk)), with H k(M) the space of smooth harmonic k-
forms by elliptic regularity. (In particular, these remain equivalent to the space of forms which
are simultaneously closed and coclosed.)

Since ∆ = dδ + δd, the second factor is contained in Ran(d) + Ran(δ), and while it does
not make sense to say these are orthogonal (we cannot pair two such distributions), it is true
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that they are independent, since if u ∈ Ran(d) ∩ Ran(δ) then u is both closed and coclosed,
hence harmonic, hence vanishing.

Thus we can write every u ∈ C−∞(M ; Λk) uniquely as u = u0 + dv + δw for a (smooth)
harmonic u0 and distributional (k− 1) and (k+ 1) forms v and w, respectively. Consider now
the map sending u0 ∈ H k(M) to its class, [u0] in the cohomology of (1.39). The proof of
injectivity is the same: if u0 = dv, then ‖u0‖2 = (dv, u0) = (v, du0) = 0 (the pairing makes
sense since u0 is smooth). The proof of surjectivity is also basically the same: any form is
written uniquely as u = u0 + dv + δw, and if du = 0 then dδw = 0, so δw is both closed and
coclosed, hence harmonic, hence vanishing.

Remark. While the isomorphism between the smooth or distributional cohomology spaces and
the spaces of harmonic forms depends on the choice of a Riemannian metric, there is a natural
map from smooth to distributional cohomology, which is just the obvious inclusion of smooth
forms into distributional ones.

Indeed, a smooth closed form is naturally a distributional closed form, and likewise a
smooth exact form is distributionally exact, so we have a homomorphism

Hk
dR(M ;R) =

{
u ∈ C∞(M ; Λk) : du = 0

}
/
{
dv : v ∈ C∞(M ; Λk−1)

}
→
{
u ∈ C−∞(M ; Λk) : du = 0

}
/
{
dv : v ∈ C−∞(M ; Λk−1)

}
=: (Hk

dR)−∞(M ;R),

depending only on the smooth structure of M , and one of the consequences of the above is
that this is an isomorphism. Thus, it does not matter on a compact manifold M whether
we compute de Rham cohomology using smooth forms, distributional forms, or something in
between, for instance the L2 complex

L2(M ; Λ0)
d−→ L2(M ; Λ1)

d−→ · · · d−→ L2(M ; Λn),

(To be precise, since d is an unbounded operator on L2, we should specify the domain of d,
such as the maximal domain or the minimal domain, but it turns out not to matter in this
case.)

1.4.2 Elliptic complexes

The Hodge theorem actually applies in a more general setting. Let Ei → M , i = 0, . . . , N be
a sequence of Hermitian vector bundles on a compact Riemannian manifold, with a sequence
of differential operators

Di ∈ Diffk(M ;Ei, Ei+1), s.t. Di+1 ◦Di = 0

with fixed degree k.

Definition 1.35. The complex

C∞(M ;E0)
D0−→ C∞(M ;E1)

D1−→ · · · DN−1−→ C∞(M ;EN ) (1.40)
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is called elliptic if for each (x, ξ) ∈ S∗M the principal symbol sequence

(E0)x
σ(D0)(x,ξ)−→ (E1)x

σ(D1)(x,ξ)−→ · · · σ(DN−1)(x,ξ)−→ (EN )x

is exact.

For an elliptic complex we can form the associated sequence of generalized Laplacians

∆i = D∗iDi +Di−1D
∗
i−1 ∈ Diff2k(M ;Ei). (1.41)

Exercise 1.7. Show that if the complex is elliptic then the operators (1.41) are elliptic. (Hint:
The principal symbol of ∆i is σ(Di)

∗σ(Di) + σ(Di−1)σ(D∗i−1), which at each (x, ξ) is a linear
operator on a finite dimensional space. Proceed as in the proofs of Lemmas 1.30 and 1.31 to
show that this linear map is injective, hence invertible.)

The analogues of Lemmas 1.30 and 1.31 and Proposition 1.32 hold in this context, with
identical proofs, which lead to the following general result, whose proof is identical to that of
Theorem 1.33.

Theorem 1.36. Let (1.40) be an elliptic complex. Then for each k there are a isomorphisms

Null(∆k) ∼= Hk
(
C∞(M ;E•), D•

) ∼= Hk
(
C−∞(M ;E•), D•

)
between the (necessarily finite dimensional space of) harmonic sections of Ek and the degree k
cohomology of (1.40), and with the degree k cohomology of the distributional complex associated
to (1.40).

1.5 L2, Sobolev spaces, and spectral theory

We will next discuss the mapping properties of pseudodifferential operators with respect to L2

and L2-based Sobolev spaces (the latter of which we will actually define using pseudodifferential
operators), and then discuss some basic spectral theory of self-adjoint elliptic operators.

1.5.1 L2 mapping properties

We have already mentioned boundedness (indeed, compactness) of smoothing operators on L2.
The next step is to extend this to operators of order r ≤ 0, using a clever trick of Hörmander
to reduce to the smoothing case.

Theorem 1.37. Let P ∈ Ψ0(M ;E,F ). Then P extends to a bounded operator

P : L2(M ;E)→ L2(M ;F ),

which is compact if P ∈ Ψr(M ;E,F ) for r < 0.
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Proof. Hörmander’s trick is to show that there exist an operator Q ∈ Ψ0(M ;E), a smoothing
operator R ∈ Ψ−∞(M ;E) and a constant c > 0 such that

P ∗P +Q∗Q = cI +R. (1.42)

To see that (1.42) implies L2 boundedness, let u ∈ C∞(M ;E) and estimate

‖Pu‖2L2(M ;F ) ≤ ‖Pu‖
2
L2(M ;F ) + ‖Qu‖2L2(M ;E)

= (P ∗Pu, u) + (Q∗Qu, u)

= c(u, u) + (Ru, u)

≤ (c+ ‖R‖L2) ‖u‖2L2

where ‖R‖L2 is the operator norm of R on L2(M ;E), which is bounded as per the discussion
preceding Lemma 1.24.

To construct Q such that (1.42) holds, we proceed inductively using the symbol calculus.
In the first step, we want to solve Q∗0Q0 = c I − P ∗P modulo Ψ−1(M ;E). First choose c > 0
sufficiently positive that

c I − σ0(P )∗(x, ξ)σ0(P )(x, ξ) ∈ End(Ex) (1.43)

is a positive self-adjoint operator for each (x, ξ) in S∗M . (This is possible by compactness: the
real-valued function

S∗M 3 (x, ξ) 7→ sup
e∈Ex, ‖e‖≤1

(
σ0(P )(x, ξ)∗σ0(P )(x, ξ)e, e

)
achieves a maximum.) Then we may choose Q0 ∈ Ψ0(M ;E) such that σ0(Q0) is a positive
square root of (1.43):

σ(Q0)2 = σ(Q0)∗σ(Q0) = c I − σ(P )∗σ(P ).

Replacing Q0 ∈ Ψ0(M ;E) by 1
2(Q0 + Q∗0) if necessary (which has the same principal symbol

as Q0), we may assume that Q0 itself is formally self-adjoint.
By induction, suppose we have formally self-adjoint operators Qj ∈ Ψ−j(M ;E) for j =

0, . . . , N such that

P ∗P +
( N∑
j=0

Qj

)2
= c I −RN , RN ∈ Ψ−N−1(M ;E), (1.44)

(note that RN is automatically self-adjoint) and consider the problem of finding QN+1 such that
(1.44) holds with N replaced by N+1. Expanding out and collecting terms of pseudodifferential
order −N − 1, we see that it suffices to solve

σ0(Q0)σ−N−1(QN+1) + σ−N−1(QN+1)σ0(Q0) = −σ−N−1(RN ).
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with σ−N−1(QN+1) self-adjoint. This finite-dimensional linear algebra problem is always solv-
able; see Lemma 1.38 below. Then replacing QN+1 by 1

2(QN+1 +Q∗N+1) again if necessary, we
have

RN+1 := cI − P ∗P −
(N+1∑
j=0

Qj

)2
∈ Ψ−N−2(M ;E),

with Qj self-adjoint, completing the induction. Taking an asymptotic sum Q ∼
∑∞

j=0Qj and

replacing Q by 1
2(Q+Q∗) completes the proof.

To see why P is compact if r < 0, note that this implies σ0(P ) = 0 by the symbol sequence,
so we may take c as small as we like. In other words, the above argument shows that in this
case, for every ε > 0 there exists Rε ∈ Ψ−∞(M ;E) such that

‖Pu‖2 ≤ (ε+ ‖Rε‖) ‖u‖2 .

Let (uj) be a bounded sequence; say ‖uj‖ ≤ M for all j. For each n ∈ N,
(
R1/n(uj)

)
has

a convergent subsequence by compactness of the Rε; by a diagonalization argument we can
replace uj by a subsequence such that

(
R1/n(uj)

)
converges for all n. In particular, given any

n, it follows that
∥∥R1/n(uj − uk)

∥∥ ≤ 1
n for all i, j sufficiently large, and then

‖P (uj − uk)‖2 ≤
(

1
n ‖uj − uk‖+

∥∥R1/n(uj − uk)
∥∥) ‖uj − uk‖ ≤ (2M + 1)2M

n
,

from which it follows that (uj) is Cauchy and therefore convergent.

Lemma 1.38. Let A be a positive self-adjoint matrix. Then the map ΦA : B 7→ AB + BA is
an isomorphism from the space of self-adjoint matrices to itself.

Proof. Recall thatA is unitarily conjugate to a positive diagonal matrix: D = diag(λ1, . . . , λk) =
S∗AS for some S such that S∗ = S−1, and observe that ΦA(SBS∗) = S ΦD(B)S∗. Thus we
may assume without loss of generality that A = D is diagonal, with λj > 0 by positivity.
Letting Eij denote the elementary matrix with entry 1 in the ith row and jth column and 0s
otherwise, we compute

ΦD(Eij + Eji) = (λi + λj)(Eij + Eji).

Since Eij + Eji for i ≤ j is a basis for the subspace of self-adjoint matrices and λi + λj 6= 0,
the result follows.

Exercise 1.8 (Schur’s Lemma). Show that, if K is a function on M ×M with the property
that

C1 = sup
y∈M

∫
M
|K(x, y)| dVolx <∞, C2 = sup

x∈M

∫
M
|K(x, y)| dVoly <∞,

then K is the Schwartz kernel of a bounded operator on Lp(M) for all p ∈ (1,∞). (Hint: it

is sufficient to show that |(Ku, v)| ≤ C
1/p
1 C

1/q
2 ‖u‖p ‖v‖q for all u ∈ Lp(M), v ∈ Lq(M) where
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1
p + 1

q = 1. To do this, write

|(Ku, v)| ≤
∫
M×M

|K(x, y)| |u(y)| |v(x)| dVolx dVoly

=

∫
M×M

(
|K(x, y)|1/p |u(y)|

)(
|K(x, y)|1/q |v(x)|

)
dVolx dVoly

and use Hölder’s inequality.)

This gives another proof that R ∈ Ψ−∞(M) extends to a bounded operator on L2, and
in fact on any Lp as well. You may generalize the statement and proof to operators acting
between sections of vector bundles.

1.5.2 Unbounded operators and closed extensions

Pseudodifferential operators of positive order are never bounded on L2, so it is necessary to
construct closed domains in L2 on which they are defined.

Recall that an unbounded operator
(
A,D(A)

)
acting between Hilbert (or more generally,

Banach) spaces H1 and H2 is, by definition a linear map A : D(A) ⊂ H1 → H2 defined on
a given subspace D(A) ⊂ H1, called the domain of A. We will always assume that D(A) is
dense in H1. We say

(
A′,D(A′)

)
is an extension of

(
A,D(A)

)
if D(A) ⊂ D(A′) and A = A′

on D(A). The basic problem of interest, of course, is to find extensions of P ∈ Ψr(M ;E,F )
when H1 = L2(M ;E) and H2 = L2(M ;F ), with initial domain D(P ) = C∞(M ;E).

For various reasons, spectral theory primarily among them, it is important to consider
closed operators (aka closed extensions). Recall that an operator

(
A,D(A)

)
is closed if its

graph GrA = {(u,Au) ∈ D(A)×H2} is a closed subset of H1×H2; in other words,
(
A,D(A)

)
is closed if, whenever uj is a sequence in D(A) such that uj → u in H1 and Auj → v in H2,
then in fact u ∈ D(A) and v = Au.

For the unbounded operator Ψr(M ;E,F ) 3 P : L2(M ;E) → L2(M ;F ) defined on the
initial domain C∞(M ;E), (and in more general settings as well) there are two canonical closed
domains. The first is the minimal domain

Dmin(P ) =
{
u : ∃ {uj} ⊂ C∞(M ;E), uj → u in L2, Puj converges in L2

}
,

obtained by taking the closure of the graph GrP , on which Pu is defined to be limPuj , which
can be seen to be independent of the sequence uj in C∞(M ;E). The second is the maximal
domain

Dmax(P ) =
{
u ∈ L2(M ;E) : Pu ∈ L2(M ;F )

}
defined as those L2 such that Pu (as a distribution5) lies in L2.

It is easy to see that Dmin(P ) ⊆ Dmax(P ); indeed, if uj → u and Puj converges in L2,
then limPuj is indeed given by Pu, computed as a distribution, since L2 convergence implies

5In the general setting of an unbounded operator on abstract Hilbert spaces, Dmax(A) is defined to be adjoint
to Dmin(A∗); in the present setting the distributional definition is more convenient.
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convergence in distributions. Furthermore, any other closed domain D(P ) lies in between, i.e.,
satisfies

Dmin(P ) ⊆ D(P ) ⊆ Dmax(P ).

In general, the existence of choices of closed domain is a bit of a pain; fortunately for elliptic
operators we have the following result.

Proposition 1.39. If P ∈ Ψs(M ;E,F ) is an elliptic operator with s > 0, then

Dmin(P ) = Dmax(P ),

i.e., P has a unique closed extension as an unbounded operator from L2(M ;E) to L2(M ;F ).

Proof. We must show that Dmax(P ) ⊂ Dmin(P ). Thus suppose u ∈ Dmax(P ), so Pu ∈
L2(M ;E). Let Q ∈ Ψ−s(M ;F,E) be a parametrix, and note

u = QPu+Ru ∈ Ran(Q) + C∞(M ;E).

Since C∞(M ;E) ⊂ Dmin(P ), it suffices to show that Ran(Q) ⊂ Dmin(P ). Thus let u = Qw ∈
L2(M ;E), with w ∈ L2(M ;F ); we must show that there is a sequence of smooth sections uj
such that uj → u in L2 and Puj converges to Pu. To see this, let wj be a sequence of smooth
sections converging in L2(M ;F ) to w. Since Q and PQ are bounded on L2 by Theorem 1.37,
it follows that

C∞(M ;E) 3 uj := Qwj → Qw, and Puj = PQwj → PQw = Pu,

which proves that Ran(Q) ⊆ Dmin(P ).

In fact, as we shall see in the next section, even more is true: the closed domains Dmax(P )
and Dmax(P ′) for two elliptic operators agree precisely if P and P ′ have the same order s; then
Dmax(P ) = Dmax(P ′) = Hs(M ;E) is nothing other than the Sobolev space of order s, which
is independent of P .

1.5.3 Sobolev spaces

Besides the Sobolev spaces of positive order, which may be viewed as closed domains in L2, it
is convenient to define L2-based Sobolev spaces of arbitrary real order, which we initially do
in a rather expansive way.

Definition 1.40. Let s ∈ R. The Sobolev space Hs(M ;E) of order s is the space

Hs(M ;E) :=
{
u ∈ C−∞(M ;E) : Au ∈ L2(M ;E) ∀A ∈ Ψs(M ;E)

}
, (1.45)

consisting of distributions with image in L2 under every operator of order s.

With this definition it is initially not clear what the topology on Hs(M ;E) is or how to
practically verify that a section lies in Hs(M ;E). These issues are addressed by the following
result.
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Proposition 1.41. The space (1.45) is equivalently characterized by

Hs(M ;E) =
{
u ∈ C−∞(M ;E) : Pu ∈ L2(M ;F )

}
(1.46)

for any fixed elliptic operator P ∈ Ψs(M ;E,F ).

Proof. We first consider the case that F = E. Then it suffices to show that any u ∈ C−∞(M ;E)
such that Pu ∈ L2(M ;E) lies in Hs(M ;E), since the other inclusion is obvious. Let Q ∈
Ψ−s(M ;E) be a parametrix with I − QP = R ∈ Ψ−∞(M ;E), and let A ∈ Ψs(M ;E) be
arbitrary. Then

Au = AQPu+ARu.

Since Pu ∈ L2(M ;E) by assumption and AQ ∈ Ψ0(M ;E), the first term is in L2(M ;E) by
Theorem 1.37. In the second term, Ru ∈ C∞(M ;E), so ARu ∈ C∞(M ;E) ⊂ L2(M ;E), which
completes the argument.

Repeating the proof with P ∈ Ψs(M ;E,F ) elliptic and A = P ′ ∈ Ψs(M ;E) elliptic, and
vice versa shows that (1.46) holds for an arbitrary pair6 of vector bundles E and F .

Note that, if s ≥ 0, Pu ∈ L2(M ;F ) for P ∈ Ψs(M ;E,F ) elliptic implies u ∈ L2(M ;E) by
u = QPu+Ru, so in fact we have

Corollary 1.42. For s ∈ [0,∞),

Hs(M ;E) = Dmax(P ) ⊆ L2(M ;E)

for any fixed elliptic P ∈ Ψs(M ;E,F ). In particular H0(M ;E) = L2(M ;E).

To put a topology on Hs(M ;E) it is convenient to construct a family of invertible elliptic
operators Λs ∈ Ψs(M ;E). To do this, for each s > 0 let As ∈ Ψs/2(M ;E) be a fixed elliptic
operator with σ(A) = I and set

Λs = A∗sAs + I ∈ Ψs(M ;E).

This operator is formally self-adjoint and injective (Λsu = 0 implies ‖Asu‖2 + ‖u‖2 = 0 hence
u = 0), so by the Fredholm theory of §1.3.3 Λs is invertible on C∞(M ;E) and C−∞(M ;E);
we let

Λ−s := Λ−1
s ∈ Ψ−s(M ;E)

be defined by the generalized inverse (which is in fact a true inverse in this case) of Λs, and
let Λ0 = I. It follows that

Λs : Hs(M ;E)→ L2(M ;E)

is an isomorphism, and then Hs(M ;E) obtains the structure of a Hilbert space with respect
to the inner product

(u, v)Hs := (Λsu,Λsv)L2 .

It follows from Corollary 1.44 below that this Hilbert space topology is independent of the
choice of Λs.

6Though of course ellipticity forces Rank(E) = Rank(F ).
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Remark. With a little more work (i.e., by showing that (complex) powers of elliptic operators
are pseudodifferential, c.f. [Shu87]) , it is possible to choose the Λs such that Λs ◦ Λt = Λs+t,
though we shall not need to do so.

In addition, the L2 pairing extends naturally from C∞(M ;E) to a nondegenerate bilinear
pairing

Hs(M ;E)×H−s(M ;E)→ C,
(u, v)L2 ≡ (Λsu,Λ−sv)L2 ,

with respect to which we have a natural identification

H−s(M ;E) ∼= Hs(M ;E)∗

of H−s(M ;E) with the topological dual of Hs(M ;E). Note that this pairing is different from
the pairing (u, v)Hs which identifies the Hilbert space Hs(M ;E) as its own dual.

Thus we now have a complete filtration over R ∪ {±∞} of the distributions by regularity,
given by

C∞(M ;E) ⊂ Hs(M ;E) ⊂ L2(M ;E) ⊂ H−s(M ;E) ⊂ C−∞(M ;E).

with ‘reflection’ across the middle represented by duality.

Remark. In fact it is possible to show as well that C∞(M ;E) = H∞(M ;E) :=
⋂
s∈RH

s(M ;E)
(see Exercise 1.10 below) and likewise that C−∞(M ;E) = H−∞(M ;E) :=

⋃
s∈RH

s(M ;E).

The fundamental properties of Sobolev spaces and their interaction with (pseudo)differential
operators on M is summarized in the following result.

Theorem 1.43.

(a) If r > s, then the natural inclusion Hr(M ;E) ↪→ Hs(M ;E) is compact.

(b) Let P ∈ Ψt(M ;E,F ). Then P extends to a bounded linear operator

P : Hs(M ;E)→ Hs−t(M ;F ) (1.47)

for any s ∈ R.

(c) If P ∈ Ψt(M ;E,F ) is elliptic, then:

(i) For each s ∈ R there exists a constant Cs > 0 such that

‖u‖Hs ≤ C(‖Pu‖Hs−t + ‖u‖Hs−t). (1.48)

(ii) P is Fredholm as a bounded operator (1.47), i.e., P has finite dimensional nullspace,
and closed range with finite dimensional complement.
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Proof. Using the isomorphisms Λ∗ with L2, the natural inclusion in part (a) is equivalent to
the map

ΛsΛ−r : L2(M ;E)→ L2(M ;E)

which is compact since ΛsΛ−r ∈ Ψs−r(M ;E) has order s− r < 0. Likewise, the map (1.47) is
equivalent to the map

Λs−tPΛ−s : L2(M ;E)→ L2(M ;F )

which is bounded as Λs−tPΛ−s ∈ Ψ0(M ;E,F ) has order 0, proving (b).
The basic elliptic estimate (1.48) follows from the existence of a parametrixQ ∈ Ψ−t(M ;F,E)

such that R = I −QP ∈ Ψ−∞(M ;E) and the estimate

‖u‖Hs ≤ ‖QPu‖Hs + ‖Ru‖Hs

≤ ‖Q‖ ‖Pu‖Hs−t + ‖R‖ ‖u‖Hs−t ,

where ‖Q‖ and ‖R‖ are the operator norms of Q and R as operators from Hs−t to Hs.
Finally, the Fredholm property (c).(ii) follows from the generalized inverse equations GP =

I − ΠNull(P ), PG = I − ΠNull(P ∗), or can be proved directly from (1.48) and the compactness
of the inclusion in part (a).

Note that part (c).(i) implies in particular that the norms ‖·‖Hs and ‖P ·‖Hs−t + ‖·‖Hs−t

are equivalent on Hs, since ‖Pu‖Hs−t and ‖u‖Hs−t are both controlled by ‖u‖Hs .
In fact, using the generalized inverse, G, for P in the proof rather than an arbitrary

parametrix leads to the following result, justifying our earlier claim that the Hilbert space
structure on Hs(M ;E) was independent of the choice of Λs.

Corollary 1.44. Let P ∈ Ψt(M ;E,F ) be an elliptic operator. Then on the space Hs(M ;E),
there is an equivalence of norms

‖·‖Hs ∼ ‖P ·‖Hs−t +
∥∥ΠNull(P )·

∥∥ .
The last term denotes any norm on Null(P ), which are all equivalent since it is finite dimen-
sional.

To compare our definition with the more traditional definition of Sobolev spaces on a
manifold7, recall that Hs(Rn), s ≥ 0, is defined as the completion of C∞c (Rn) with respect to
the norm

‖u‖2Hs(Rn) :=

∫
Rn

(1 + |ξ|2)s |û(ξ)|2 dξ

(with a naturally associated inner product). Here û(ξ) denotes the Fourier transform. By the
Parseval identity, we can write this in terms of the original function u by

‖u‖2Hs(Rn) =
∥∥∥(1 + |D|2)s/2u

∥∥∥2

L2
,

7We ignore vector bundles in the following remarks; it is straightforward to extend to the case of sections of
a vector bundle.
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where (1 + |D|2)s/2 is the operator defined by the oscillatory integral kernel8

(1 + |D|2)s/2 =
1

(2π)n

∫
Rn

ei(x−y)·ξ(1 + |ξ|2)s/2 dξ.

This is precisely a self-adjoint, invertible pseudodifferential operator on Rn of order s with
principal symbol given by the identity, in other words, (1 + |D|2)s/2 represents a choice of
Λs ∈ Ψs(Rn), to use our earlier notation.

This traditional definition is transferred from Rn to a manifold by choosing a covering of M
by coordinate charts {Ui} supporting a partition of unity {φi} and completing C∞(M) with
respect to the norm

u 7→
∑
i

‖φiu‖Hs(Rn) .

However, this is equivalent to the norm ‖Λsu‖L2(M) where Λs is defined by

Λs =
∑
i

φi(1 + |D|2)s/2φi ∈ Ψs(M)

using the local coordinate charts, and by our results above this results in the same space.

The local characterization of Hs(M) has some advantages, especially when it comes to
relating Sobolev regularity to ordinary derivatives. For example, when s ∈ N, it is straightfor-
ward to prove that there exists c > 0 such that

c−1(1 + |ξ|2)s/2 ≤
∑

0≤|α|≤s

ξα ≤ c(1 + |ξ|2)s/2, (1.49)

from which it follows that Hs(Rn) (and therefore Hs(M)) is equivalent to the space of L2

functions u with s (distributional) derivatives in L2, i.e., such that
∑
|α|≤sD

α
xu ∈ L2 everywhere

locally.

Exercise 1.9. Prove (1.49). Hint: if ξ = (ξ1, . . . , ξn), homogenize by introducing a variable ξ0

and considering the homogeneous functions (ξ2
0 + |ξ|2)s/2 and

∑
|α|≤s ξ

s−|α|
0 ξα restricted to the

unit sphere in Rn+1.

Likewise, it is straightforward to prove the following standard Sobolev embedding theorem:

Theorem 1.45. If s > k+n/2, n = dim(M), then Hs(M) ⊂ Ck(M). In particular H∞(M) =⋂
sH

s(M) = C∞(M).

8meaning it defines a distribution in R2n defined by pairing with a smooth compactly supported function
φ(x, y) and performing the integral in x and y before integrating in ξ.
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Exercise 1.10. Prove Theorem 1.45. Hint: since the statement is local, it suffices to prove it
for compactly supported functions in Rn, where one may estimate

|u(x)| =
∣∣∣(2π)−n

∫
Rn

eix·ξ û(ξ) dξ
∣∣∣

≤ (2π)−n
∫
Rn

(1 + |ξ|2)−s/2(1 + |ξ|2)s/2 |û(ξ)| dξ

≤ (2π)−n
(∫

Rn

(1 + |ξ|2)−s dξ
)1/2(∫

Rn

(1 + |ξ|2)s |û(ξ)|2 dξ
)1/2

,

using Cauchy-Schwartz. The second factor is ‖u‖2Hs(Rn), and if 2s > n then the first factor
converges. Taking the supremum over x proves the result for k = 0, and higher derivatives may
be taken into account using the fact that Dxj = −i∂xj is intertwined with ξj by the Fourier
transform.

A more traditional approach to elliptic theory on compact manifolds proceeds by defining
Sobolev spaces on M by localizing to coordinate charts as above, and then proving the sequence
of results in Theorem 1.43 for differential operators. The compact inclusion in part (a) is known
as Rellich’s Lemma. The boundedness (1.47) is straightforward to prove directly for differential
operators; the crucial difficulty comes in proving the elliptic estimate (1.48). Once this has
been done, elliptic regularity follows by bootstrapping (Pu ∈ Hs−t, u ∈ Hs−t implies u ∈ Hs),
and Fredholmness of P as an operator Hs → Hs−t follows from the compactness of Hs−t ⊆ Hs

and an argument similar to the proof of Lemma 1.25.

1.5.4 Spectral theory

The next order of business is to discuss the spectral theory of (self-adjoint) elliptic operators.
Recall that the spectrum of a general (possibly unbounded, but closed) operator

(
A,D(A)

)
on a Hilbert space H is the set spec(A) ⊆ C defined by

λ /∈ spec(A) ⇐⇒ (A− λI)−1 : H bounded,

i.e., as the complement of the set of λ such that A − λI : D(A) ⊆ H → H admits a bounded
inverse. Generally speaking, there are several ways for A− λI to fail to be invertible:

• A− λI may not be injective, i.e., Null(A− λI) may be non-empty. In this case we say λ
is an eigenvalue, and the set, specpt(A) of such λ is called the point spectrum.

• A− λI may be injective but not be surjective. In this case we further subdivide into the
continuous spectrum

specc(A) = {λ : (A− λI) injective with dense range, not surjective.}

and the residual spectrum

specres(A) = {λ : (A− λI) injective without dense range.}
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These various types of spectrum, as well as the dependence of spec(A) on the choice of
domain D(A), make life generally complicated. Fortunately in the case of interest to us, the
story is vastly simplified.

As we have seen, an elliptic operator P ∈ Ψs(M ;E) for s > 0 forms an unbounded operator
on L2(M ;E) with the unique closed domain D(P ) = Hs(M ;E). If P is formally self-adjoint,
meaning P ∗ = P as an operator on C∞(M ;E) then by uniqueness of the closed domains for
elliptic operators it follows that P is essentially self-adjoint, i.e., there is a unique closed
domain D(P ) = D(P ∗) on which P = P ∗.

Let us now make use of ellipticity. Note first that, since λI ∈ Ψ0(M ;E) has order strictly
less than that of P , the operator P − λI is elliptic if and only if P is.

If λ ∈ specpt(P ) is an eigenvalue, then by ellipticity of P −λI, the eigenspace Null(P −λI)
is finite dimensional. Note that if u1 and u2 are eigenfunctions with eigenvalues λ1 and λ2,
then

λ1(u1, u2) = (Pu1, u2) = (u1, Pu2) = λ2(u1, u2).

With u2 = u1 it follows that any eigenvalues of P must be real, and with λ1 6= λ2 it follows
that eigenfunctions with distinct eigenvalues are orthogonal.

Next, by Fredholm theory, P − λI : Hs(M ;E)→ L2(M ;E) always has closed range, so P
cannot have continuous spectrum, and from Ran(P − λI)⊥ = Null(P ∗ − λI) = Null(P − λI),
it follows that P cannot have residual spectrum either: if P was not surjective, then the
complement of its range would consist of eigenvectors with eigenvalue λ, which is equal to λ
by reality.

We conclude that the spectrum of P consists entirely of eigenvalues, and in fact the situation
is as nice as possible:

Theorem 1.46. Let P ∈ Ψs(M ;E), s > 0 be a self-adjoint elliptic operator. Then spec(P ) ⊂
R ⊂ C forms a discrete set {λj : j ∈ N} with |λj | → ∞, and there is a complete orthonormal
basis of L2(M ;E) consisting of eigenvectors of P .

The proof follows directly from the spectral theorem for self-adjoint compact operators on
a Hilbert space, which is a standard result:

Theorem 1.47 (c.f. [Tay96a], Prop. 6.6, Appendix A.). Let A be a self-adjoint, compact
operator on the Hilbert space H. Then H has a complete orthonormal basis of eigenvectors
{uj : Auj = λjuj}, and the eigenvalues {λj} ⊂ R form a sequence of real numbers with 0 as
the only possible accumulation point.

Exercise 1.11. Prove (or look up the proof of) Theorem 1.47, which is relatively simple. Here
is an outline:

(1) Any eigenspaces of A are finite dimensional (by compactness) and orthogonal (by self-
adjointness), with real eigenvalues (by self-adjointness), and the orthocomplement of an
eigenspace is invariant under A (by self-adjointness).

(2) Either ‖A‖ or −‖A‖ is an eigenvalue, by the following steps.
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(a) By compactness, u 7→ ‖Au‖ achieves a maximum on the unit ball, so there exists u
with ‖u‖ = 1 and ‖Au‖ = ‖A‖.

(b) For any w orthonormal to u,

‖A‖2 + 2sRe(A2u,w) + s2 ‖Aw‖2 = ‖A(u+ sw)‖2 ≤ ‖A‖2 (1 + s2)

for all s ∈ R, which as s→ 0 implies (A2u,w) = 0, so u is an eigenvalue of A2 with
eigenvalue ‖A‖2.

(c) Obtain an eigenvector of A with eigenvalue ±‖A‖ by taking either v = ‖A‖u+Au,
or u itself (if v = 0).

(3) By induction, suppose we have eigenvalues λi and eigenspaces Ei, i = 1, . . . , N , with
|λi| > |λi+1|, such that A|(⊕N

i=1 Ei)⊥
has norm ‖A‖ < λN . Then by the above there is

an eigenvalue λN+1 with |λN+1| =
∥∥A|(⊕iEi)⊥

∥∥, and off of the corresponding eigenspace
EN+1, A must have strictly smaller norm.

Proof of Theorem 1.46. We know spec(P ) ⊂ R, and it can’t be all of R, since then orthog-
onality of eigenvectors would then imply the existence of an uncountable orthonormal set in
L2(M ;E), which is a separable Hilbert space9. Thus there exists some λ0 ∈ R such that
P − λ0I is invertible.

Since (P − λ0I)−1 ∈ Ψ−s(M ;E) is a compact, self-adjoint operator, Theorem 1.47 applies,
and then it suffices to note that

Pu = λu ⇐⇒ (P − λ0I)−1u =
1

λ− λ0
u.

(Add and subtract λ0u on the LHS and multiply by (P − λ0I)−1.) Thus there is a complete
orthonormal basis of L2(M ;E) consisting of eigenvectors of P , which form a sequence {λj} ⊂ R
with |λj | → ∞, since 1

λj−λ0 may only accumulate at 0.

From this we obtain one of the fundamental results for compact Riemannian manifolds:

Corollary 1.48. Let (M, g) be a compact manifold. Then the space L2(M) admits a complete
orthonormal basis of eigenfunctions of the scalar Laplacian ∆ ∈ Diff2(M), with eigenvalues
(written with multiplicity)

0 = λ0 < λ1 ≤ λ2 ≤ · · · (1.50)

forming a sequence such that λj → +∞.

Proof. It only remains to verify that the eigenvalues are non-negative and contain 0. The first
follows from the fact that ∆ is a positive operator:

(∆u, u) = (d∗du, u) = ‖du‖2 ≥ 0,

and the second follows from the fact that constant functions have eigenvalue 0 (i.e., are har-
monic).

9If you don’t like this argument, you can take λ0 ∈ C \ R below, but then you have to employ the spectral
theorem for normal compact operators, rather than self-adjoint ones.
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Definition 1.49. We refer to the sequence (1.50) as the spectrum of the Riemannian manifold
(M, g).

One way to view Corollary 1.48 is that it gives us a kind of Fourier decomposition of
functions on M . When solving PDE involving the Laplacian, such as the heat equation (∂t +
∆)u = f , the Schrödinger equation (i∂t+∆)u = f or the wave equation (∂2

t +∆)u = f , we may
decompose u and f into eigenfunctions, thereby achieving a kind of separation of variables.

From another point of view, we may consider the association (M, g) 7→ (λj : j ∈ N). Clearly
the spectrum is determined entirely by the metric on M ; in particular if two Riemannian
manifolds are isometric, then they have identical spectra. The converse question, or inverse
problem, of whether a compact Riemannian manifold is determined up to isometry by its
spectrum (to paraphrase Mark Katz’s famous question, ”Can you hear the shape of a compact
Riemannian manifold?”) is false in general. Indeed, sporadic examples of isospectral but non-
isometric manifolds have been known going back to Milnor in 1964, and there are systematic
constructions of such examples going back to Sunada from 1985. However, the question of just
how much of the geometry of (M, g) is encoded by the spectrum (1.50) is a topic of ongoing
research.
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Chapter 2

Spectral theory and heat kernels

2.1 Overview

A general version of the spectral theorem for an unbounded, self-adjoint operator
(
A,D(A)

)
on

a Hilbert space H says that there exists a projection-valued measure dE(λ) on R, meaning
a Borel measure on R, supported on the spectrum of A, taking values in projection operators
on H, such that we have the spectral resolution

A =

∫
λ dE(λ).

Then, to any function f which is measurable with respect to dE(λ), we obtain a new (possibly
unbounded) operator

f(A) =

∫
f(λ) dE(λ),

with A itself associated to the identity function and I associated to the constant function 1.
This association of f to f(A) is known as the functional calculus.

If P ∈ Ψs(M ;E), s > 0 is self-adjoint and elliptic, then the measure is simple to describe.
Indeed, from Theorem 1.46, the spectrum consists entirely of discrete eigenvalues spec(P ) =
{λj}, which we write with multiplicity for convenience, and the measure is atomic, of the form

dE(λ) =
∑
j

δ(λ− λj) Πj ,

where δ(λ− λj) is the Dirac measure concentrated at λj , and Πj denotes projection onto the
(necessarily 1-dimensional since we count eigenvalues with multiplicity) eigenspace associated
with λj . Letting {ej ∈ C∞(M ;E)} denote an L2 orthonormal basis of eigenfunctions, the
Schwartz kernel of Πj is simply ej(x)e∗j (y) and the spectral resolution is

P =
∑
j

λjej(x)e∗j (y), f(P ) =
∑
j

f(λj)ej(x)e∗j (y).

An operator of particular interest is the following.

51



52 Linear Analysis on Manifolds

Definition 2.1. Suppose P ∈ Ψs(M ;E), s > 0 is self-adjoint and positive. (In particular
spec(P ) ⊂ R+ := [0,∞).) Then the heat kernel associated to P is the family of operators

e−tP =

∫
R+

e−tλ dE(λ) =
∑
j

e−tλjej(x)e∗j (y), t ∈ R+, (2.1)

In light of the identities1

(∂t + P )e−tP = 0, t > 0,

e−tP |t=0 = I,
(2.2)

the heat kernel gives a (forward) fundamental solution to the associated (homogeneous) heat
equation

(∂t + P )u = 0 on R+ ×M ,

u(0, x) = u0(x) ∈ L2(M ;E)
(2.3)

in C1
(
R+;L2(M ;E)

)
, meaning that u = e−tPu0 is the unique solution to (2.3). Uniqueness of

solutions to (2.3) follows from the fact that their L2 norms are decreasing in t via

∂t ‖u‖2L2 = 2(∂tu, u) = −2(Pu, u) ≤ 0,

so u0 = 0 implies u ≡ 0. This also implies uniqueness of the operator solutions to (2.2).
In addition to the homogeneous initial value problem, the heat kernel can also be used to

solve the associated inhomogeneous equation

(∂t + P )u = f

u(0, x) = u0(x),
(2.4)

where f = f(t, x) is a function of t with values in L2(M ;E). Indeed, Duhamel’s formula
says that (2.4) admits the solution

u = e−tPu0 +

∫ t

0
e−(t−s)P f(s, ·) ds.

(See the discussion of convolution operators in §2.3.7.)
While the spectral theory of self-adjoint operators provides the existence of e−tP on abstract

grounds, and (2.1) gives a representation of its Schwartz kernel, it is in general quite difficult
to extract useful information from this representation. Below we will construct a parametrix
(approximate forward fundamental solution) for the heat equation in the case that P is a
second order, Laplace-type differential operator (and not necessarily self-adjoint), which will
allow us to determine various properties of the heat kernel.

1Technically speaking, the differentiation ∂te
−tP = −Pe−tP requires justification, and attention must be

paid to the domains on which each side is bounded. However, it is straightforward to check that e−tP is a
bounded operator for all t ≥ 0; indeed we shall later show that it is compact (in fact trace-class) for t > 0.
Likewise, one can show that the differentiation identity is valid on the domain of P .
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In fact, rather than using information about the spectrum of P to solve the associated
heat equation, we may turn the problem around and use the fundamental solution to the heat
equation to get information about the spectrum. To motivate this, consider that we can pass
from the projection-valued measure dE(λ) =

∑
δλjΠj on R+ to a real-valued measure on R+

by taking the trace of each projection Πj (which simply counts the number of independent
eigenvectors; since we have counted with multiplicity this number is always 1).

Definition 2.2. For P as above, define the spectral measure by

dµ(λ) := Tr dE(λ) =
∑

δλj Tr Πj =
∑

δλj .

This is an atomic measure on R+, and gives rise to the eigenvalue counting function

N(l) := |{λj ∈ spec(P ) : λj ≤ l}| =
∫ l

0
dµ(λ),

which is simply the count of all the eigenvalues (with multiplicity) less than or equal to l.

Notice that, since the trace is a linear functional, it follows that, for any f in the functional
calculus for which Tr f(P ) is well-defined, i.e., such that f(P ) is trace-class (see §2.4), then
we expect to have have∫

R+

f(λ) dµ(λ) =

∫
R+

f(λ) Tr dE(λ) = Tr

∫
f(λ)dE(λ) = Tr f(P ).

In particular, the Laplace transform2 of the counting measure dµ(λ) is the distribution∫
e−tλ dµ(λ),

which by the above reasoning, we expect to coincide with the trace of the heat kernel, Tr e−tP ,
should the latter be well-defined. As one generally expects from harmonic analysis, transforms
such as Fourier or Laplace generally encode asymptotic behavior of a distribution as λ → ∞
in terms of the asymptotic behavior of the transform as t→ 0. This is indeed the case, as we
will later see in the form of Karamata’s Tauberian Theorem (c.f. Prop. 2.24).

2.2 Heat kernel of Laplacian on Euclidean space

The approach we shall follow regarding the construction of heat kernel parametrices is via a
manifold with corners called the “heat space”, following [Mel93]. This is also the approach
followed in [Alb12]. A more traditional approach (originally due to Hadamard) can be found
in [BGV92], among other sources.

2As a special case of the Fourier transform, the Laplace transform is well-defined, say, on tempered distribu-
tions.
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In preparation for our parametrix construction let us first consider the heat kernel for the
ordinary scalar Laplacian

∆ = −
n∑
i=1

∂2
xi =

n∑
i=1

D2
xi ∈ Diff2(Rn)

on Euclidean space, which can be explicitly identified. We seek the fundamental solution
H(t, x, y) ∈ C−∞(R+ × R2n) to the equation

(∂t + ∆)H = 0, H(0, x, y) = δ0(x− y).

By translation invariance of all operators involved, it follows that H has the form H(t, x, y) =
h(t, x− y) where h ∈ C−∞(R+ × Rn) satisfies

(∂t + ∆)h = 0, h(0, x) = δ0(x).

Taking the Fourier transform in x, this becomes

(∂t + |ξ|2)ĥ = 0, h(0, ξ) = 1,

with the unique solution ĥ(t, ξ) = e−t|ξ|
2

. By a standard calculation, the inverse Fourier

transform of this is h(t, x) = (4πt)−n/2e−|x|
2/4t, from which we obtain

H(t, x, y) =
1

(4πt)n/2
exp

(
− |x− y|

2

4t

)
. (2.5)

Exercise 2.1. Prove that if f̂(ξ) = e−t|ξ|
2

then f(x) = (4πt)−n/2e−|x|
2/4t.

There are several things to remark about (2.5). The first is that H(t, x, y) is a smooth
function for t > 0. Furthermore, for fixed x 6= y, H(t, x, y) vanishes rapidly as t→ 0. The only
singularity of H(t, x, y) is therefore at the set {0} × Rndiag ⊂ R+ × R2n, i.e., at the diagonal at
time 0.

Let us consider the precise manner in which H(t, x, y) is singular here. First of all, there is
the overall singular factor of t−n/2, though this is comparatively mild. More importantly is the

term exp
(
− |x−y|

2

4t

)
. Evidently this admits different limits depending on the path of approach

to the singular locus; along a path such that

|x− y|2 = c t, c ≥ 0,

the limit is exp
(
− c

4

)
. To motivate the constructions below, we determine a “change of vari-

ables” with respect to which H(t, x, y) becomes smooth.

First of all, the homogeneity of |x− y|2 /4t along with the factor t−n/2 strongly suggest
introducing

τ :=
√
t
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as a coordinate. Of course this is not a diffeomorphism, but the map τ 7→ t = τ2 is a smooth
map from R+ to itself. Since the kernel only depends on x − y, it is also useful to write
z = (x− y)/2, and take w = (x+ y)/2 (or even w = x; it doesn’t really matter). We now have

H(τ, z, w) = Cnτ
−n exp

(
−
∣∣∣z
τ

∣∣∣2 ), Cn = (4π)−n/2.

on the product manifold (R+)τ × Rnz × Rnw.

Next, consider the first two factors (R+)τ × Rnz as half-space of Rn+1 and use polar coor-
dinates. Thus write

Rn+1 3 (τ, z) = rω,

ω ∈ Sn+ :=
{

(ω0, ω
′) ∈ R+ × Rn : ω2

0 +
∣∣ω′∣∣2 = 1

}
.

In these new variables, we have

H(r, ω, w) = Cn(rω0)−n exp
(
−
∣∣∣∣ω′ω0

∣∣∣∣2 ).
Notice that the exponential factor is smooth since ω2

0 + |ω′|2 = 1. Furthermore, as a function
on the hemisphere Sn+, ω0 is equal to 1 in the center, and tends smoothly to 0 at the boundary,
∂Sn+ = Sn−1, and the exponential decay of exp

(
−1/ω2

0

)
compensates for the ω−n0 term. We

conclude that

rnH(r, ω, w) is smooth on (R+)r × Sn+ × Rn.

Of course, (r, ω) are not actually coordinates on R+ × Rn at r = 0; rather they define a
smooth surjection R+×Sn+ → R+×Rn, (r, ω) 7→ rω, which is a diffeomorphism for r > 0. This
is an example of a radial blow-up, which we will consider in more detail in the next section.
The composite map

β : R+ × Sn+ × Rn → R+ × R2n,

(r, ω, w) 7→ (t, x, y) = (r2ω2
0, w + rω′, w − rω′),

(2.6)

is a smooth surjection from a manifold with corners to a manifold with boundary, which is
again a diffeomorphism away from the boundaries. To restate the above, it has the property
that

β∗H ∈ r−nC∞(R+ × Sn+ × Rn),

which is to say it effectively resolves the singularity of H(t, x, y) at t = 0.

This will be the guiding principle for the heat space construction for a manifold, which we
consider next.
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2.3 Heat kernel on a manifold

Let M be a compact Riemannian manifold and P ∈ Diff`(M ;E) an elliptic differential operator
(not necessarily self-adjoint). Guided by the above analysis of the heat kernel for ∂t+∆ on Rn,
we will construct a space supporting a parametrix for the heat kernel of ∂t +P on M . We will
proceed generally at first and then specialize to the case that ` = 2 and the principal symbol
σ2(P ) is a scalar multiple of the identity. However, the construction below can be modified to
handle the general case (and even the case that P is pseudodifferential).

2.3.1 Blow-up

Definition 2.3. Let N be a compact manifold (possibly with boundary), and Y ⊂ N a
submanifold (which may lie in ∂N). The radial blow-up, [N ;Y ], of Y in N is the space
constructed as follows. As a set,

[N ;Y ] = (N \ Y ) ∪ S+Y,

where S+Y denotes the inward pointing spherical normal bundle to Y :

S+Y = {[v] ∈ NY/(0,∞) : v = ∂tχ(t), ∃ χ : [0, 1]→ N}

consisting of normal vectors which are the limits of paths in N through Y (hence inward
pointing). We define the (surjective) blow-down map

β : [N ;Y ]→ N, β(p) =

{
p p ∈ N \ Y,
π(p) p ∈ S+Y

,

by the identity away from Y and the bundle projection π : S+Y → Y over Y . The topology
and smooth structure on [N ;S] are generated by the functions{

f/g : f, g ∈ C∞(N), Y = f−1(0) = g−1(0), df |Y , dg|Y 6= 0
}

of smooth functions vanishing simply and only at Y . By L’Hopital’s formula these functions
have well-defined limits3 on open sets of S+Y . We refer to the boundary face S+Y ⊂ [N ;Y ]
as the front face of the blow-up.

If N either has no boundary or Y ∩∂N = ∅, then [N ;Y ] is a manifold with boundary (with
a new boundary component consisting of the face S+Y = SY ). If Y ⊂ ∂N , then [N ;Y ] is a
manifold with corners, meaning it has coordinate charts modeled on open sets in Rk+ ×Rn
(here with k ≤ 2). In fact, the radial blow-up may be defined if N is already a manifold with
corners and Y is any suitably nice submanifold, though we shall not need this full generality.
The blow-down map is a surjective submersion which restricts to a diffeomorphism away from
Y .

3At [v], take the limit along any path with ∂tχ(t) = v, noting that the result is independent of χ and v.



Chapter 2. Spectral theory and heat kernels 57

To connect this definition with our earlier comments, note that if (locally, say) Y is the
inclusion of the origin in N = Rn or N = R+ × Rn−1 then the polar coordinates (r, ω) ∈
R+× Sn−1

(+) lift to a system of coordinates on [N ;Y ] which are nondegenerate all the way down
to r = 0. Thus radial blow-up can be regarded as the act of “taking polar coordinates seriously”
along Y .

2.3.2 Heat space

Returning to the consideration of ∂t +P , P ∈ Diff`(M ;E), we first introduce the `th root of t
in the space R+ ×M2 via the map

% : R+ ×M2 → R+ ×M2,

(τ, x, y) 7→ (τ `, x, y) = (t, x, y).
(2.7)

Having done this, we then blow up {0} ×Mdiag, to obtain the manifold with corners

M2
H := [R+ ×M2; {0} ×Mdiag] (2.8)

tf

hf

tf

R+ ×Mdiag

Figure 2.1: Heat space

Definition 2.4. The manifold (2.8) will be called the heat space of M , and we denote by

βH : M2
H → R+ ×M2 (2.9)

the composite βH = % ◦ β of the blow-down map and the map (2.7).
The heat space has two boundary hypersurfaces; the front face of the blow-up, which we

will refer to as the heat face, will be denoted hf ⊂ M2
H and the other face (the lift of the

original boundary face {0}×M2), which we refer to as the temporal face will be denoted by
tf ⊂M2

H . See Figure 2.1.
We fix once and for all boundary defining functions ρhf , ρtf ∈ C∞

(
M2
H ; [0,∞

)
), meaning

smooth, non-negative functions such that ρ−1
hf (0) = hf, dρhf |hf 6= 0, and similarly for ρtf .

4 As τ
vanishes at both tf and hf, we may assume that

τ = ρtfρhf .

4Such a boundary defining function is unique up to multiplication by a strictly positive smooth function.
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Figure 2.2: Radial compactification

Remark. In our consideration of the heat kernel on Rn, the polar coordinate r is an example
of a boundary defining function for hf, and ω0 is a boundary defining function for tf.

Let us consider the structure of the heat face. As the inward pointing spherical normal
bundle of {0} ×Mdiag it has the structure of a fiber bundle over M = Mdiag.

Proposition 2.5. The heat face hf is canonically diffeomorphic to the radial compactification
of the tangent bundle over M :

hf ∼= TM →M. (2.10)

Proof. Recall that the radial compactification, Rn, of the vector space Rn is obtained by
embedding Rn as Rn × {1} ⊂ Rn × R+ and then identifying Rn with the open hemisphere by
a variant of stereographic projection:

Rn 3 v ←→ 1√
|v|2+1

(v, 1) ∈ S̊n+ ⊂ Rn × R+.

Then Rn is identified with the closed hemisphere Sn+. (See Figure 2.2.)

If E → M is a vector bundle, then performing the same construction fiberwise in E ⊕ R+

defines the fiberwise radial compactification E →M .

Now consider the (inward pointing) normal bundle of {0} ×Mdiag ⊂ R+ ×M2. Since we
have a canonical temporal direction, this splits as

N+({0} ×Mdiag) ∼= R+ ⊕ (N Mdiag),

where N Mdiag denotes the normal bundle of Mdiag ⊂ M2, and this identifies the spherical
normal bundle S+({0} × Mdiag) with the radial compactification N Mdiag. The rest of the
claim then follows from the canonical isomorphism

NMdiag = T (M2)/T (Mdiag) = (TM ⊕ TM)/TM ∼= TM.

Rather than use polar coordinates, it is often more convenient to use projective coordi-
nates on a blow-up. Suppose that x = (x1, . . . , xn) denotes local coordinates on a set U ⊂M ,
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and write (τ, x, y) for the corresponding coordinates on the intermediate space (R+)τ × U2 of
(2.7). Then we have a local coordinate system

(τ, x, ζ) :=
(
τ, x, (x− y)/τ

)
, h̊f = {τ = 0} , (2.11)

on a neighborhood of the interior of hf|U , with respect to which the fibration (2.10) takes the
form (0, x, ζ) 7→ x. Thus ζ = (ζ1, . . . , ζn) ∈ Rn furnish Euclidean coordinates on the fibers of
h̊f ∼= TM →M .

2.3.3 Kernels

Motivated by the analysis of the heat kernel on Rn in §2.2, we will consider Schwartz ker-
nels which are, up to an overall power of ρhf , smooth on M2

H and rapidly vanishing with all
derivatives at tf. For brevity, define

Φk = Φk(M ;E, `) := ρ∞tf ρ
−k
hf C

∞(M2
H ; END(E)

)
= ρ∞tf τ

−kC∞
(
M2
H ; END(E)

)
, k ∈ Z,

(the equality of spaces follows from the fact that τ = ρtfρhf), where END(E) = Hom(π∗2E, π
∗
1E)

and πi : M2
H → M , i = 1, 2 denotes the composite of βH and the corresponding projection to

M . The notation ρ∞C∞(M) is shorthand for the space
⋂
n∈Z ρ

nC∞(M). We refer to k as the
order.

Remarks.

• Based on the analysis of the heat kernel for ∂t+ ∆ on Rn, we expect that the heat kernel
of ∂t + P will be a heat operator of order n = dim(M). Because of this, it would be
natural to define the order to be k− n− ` rather than k, so that the “inverse” of ∂t + P
has order −`. This is done in [Mel93], for instance. However we will persist with the
convention above in the interest of simplicity.

• The heat operators are not pseudodifferential per se (though restricting to any fixed t > 0
they of course determine smoothing operators), but there are some similar features. The
order defines a filtration of

⋃
k∈Z Φk with k ≤ l implying Φk ⊆ Φl. We will construct a

parametrix order by order, solving away error terms of increasingly negative order.

Proposition 2.6. Each A ∈ Φk defines an operator

A : C∞(M ;E)→ t(n−k)/`C∞
(
(R+)1/` ×M ;E

)
⊂ t(n−k)/`C0

(
R+;C∞(M ;E)

)
where in the range space, C∞

(
(R+)1/`

)
denotes a smooth function of t1/` = τ .

Proof. As an operator, A is given by pairing with the distributional kernel β∗(A) ∈ C−∞
(
(R+)t×

M2; END(E)
)

via

Au =

∫
M
β∗(A)(x, y, t)u(y) dVolg(y) (2.12)

For t > 0 this is evidently smooth, so it suffices to verify what happens near t = 0. Since
A vanishes rapidly at tf, we need only consider a neighborhood of hf and may work locally.
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Considering x and y now as local coordinates, we have dVolg(y) = ω(y) |dy|, and then in terms
of the coordinates (2.11) upstairs on M2

H we have∫
β∗(A)(x, y, t)u(y)ω(y) |dy| =

∫
A(x, ζ, τ)u(x− τζ)ω(x− τζ)τn |dζ|

=

∫
τ−kA0(x, ζ, τ)u(x− τζ)ω(x− τζ)τn |dζ|

= τn−k
∫
A0(x, ζ, τ)u(x− τζ)ω(x− τζ) |dζ|

(2.13)

where A0 is smooth on M2
H . By the smoothness of u and rapid decay of A0 as |ζ| → ∞ (i.e., at

tf), the integral converges to a smooth function of x and τ . The result then follows by setting
τ = t1/`.

Setting τ = 0 in the integral in formula (2.13) gives important information about the action
of Φk at t = 0; namely the leading order (i.e., coefficient of t(n−k)/`) of Au at t = 0 is given by(

t(k−n)/`Au
)
|t=0 = c u, c(x) =

∫
Rn

A0(x, ζ, 0)ω(x) |dζ| , (2.14)

where A0 is the leading order coefficient of A with respect to τ at h̊f ∼= TM . This coefficient
will play an important role below (it is the analogue in this context of the principal symbol for
pseudodifferential operators), so in general we set

N(A) = Nk(A) := (τkA)|hf ∈ ρ∞tf C∞
(
hf; End(E)

) ∼= S(TM ; End(E)
)
, A ∈ Φk, (2.15)

where we identify the smooth functions on hf ∼= TM vanishing rapidly at the boundary with
the Schwartz space S(TM), consisting of smooth functions on TM whose restriction to each

fiber satisfies the classical Schwartz estimates supζ
∣∣ζα∂βζ u(ζ)

∣∣ <∞ for all α, β ∈ Nn.

Note that (2.14) makes invariant sense: we have an identification of h̊f with TM , and the
Riemannian metric on M determines a Riemannian metric on TM , whose volume form at the
fiber over x is precisely ω(x) |dζ|, where (x, ζ) are standard coordinates on TM obtained from
coordinates x on M . We denote by∫

fib
: S(TM)→ C∞(M)

the map given by integrating rapidly decaying functions over the fibers of TM with respect to
this volume form. The result is of particular importance in the case k = n, so we record it as
follows.

Corollary 2.7. For A ∈ Φn, let N(A) ∈ S(TM ; END(E)
)

denote the leading order coefficient
of A at hf as above. Then the t = 0 restriction of A is the multiplication operator

A|t=0 : C∞(M ;E)→ C∞(M ;E),

A|t=0u =
(∫

fib
N(A)

)
u

In particular A|t=0 = I if and only if
∫

fibN(A) = I ∈ C∞
(
M ; End(E)

)
.
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We conclude that the heat kernel should be an element H ∈ Φn satisfying the initial
condition that N(H) = (τnH)|hf has fiber integral 1 ∈ C∞

(
M ; End(E)

)
.

2.3.4 Action of differential operators

Next we consider the action of ∂t + P on elements of Φk. Note that ∂t + P makes sense on
(R+)t ×M2 (with P acting on the left factor of M2), and we then want to pull it back to M2

H

via β. Now, vector fields (and by extension, differential operators) do not generally pull back
under smooth maps, but since β is a diffeomorphism from the interior of M2

H to the interior
of R+ ×M2, the lift is well-defined by continuous extension to the boundary. In fact to avoid
singularities, it is convenient to lift t(∂t + P ) instead.

First consider t∂t. Lifting this with respect to (2.7), we have

t∂t 7−→ τ `
∂τ

∂t
∂τ = τ `

( ∂t
∂τ

)−1
∂τ = 1

` τ∂τ .

Then in terms of the projective local coordinates (2.11) this further lifts to

1
` τ∂τ 7−→

1
` τ
(
∂τ +

∑
j

∂ζj
∂τ

∂ζj

)
= 1

` τ
(
∂τ +

∑
j −

ζj
τ2
∂ζj

)
= 1

` (τ∂τ − ζ · ∂ζ). (2.16)

While we have employed local coordinates, the radial vector field ζ · ∂ζ is in fact invariantly

defined on the vector bundle h̊f ∼= TM →M as the infinitesimal generator of the scaling action
by (0,∞).

Before lifting tP ∈ Diff`(M ;E), consider first the lift of a single vector field on M (i.e.,
a first order differential operator). Lifting t1/`V , where V is a vector field given locally by
V =

∑
j aj(x)∂xj , we have

t1/`V 7−→ τV = τ
(∑

jaj(x)
(
∂xj +

∂ζj
∂xj

∂ζj
))

=
∑

jaj(x)∂ζj +O(τ).

Then if P is given locally by P =
∑
|α|≤` aα(x)∂αx , it follows that tP lifts as

tP 7−→
∑
|α|=`

aα(x)∂αζ +O(τ). (2.17)

In particular, modulo terms of order O(τ), we only retain the principal part of P . Recall that
one version of the principal symbol of a differential operator is as a homogeneous polynomial
along the fibers of T ∗M , varying smoothly with the base. Dually, σ(P ) may be considered
as a differential operator on TM , which is differential only along the fibers and is translation
invariant with respect to the linear structure. Indeed, taking a Fourier transform fiberwise
identifies translation invariant differential operators on TxM with polynomials on T ∗xM . The
first term in (2.17) is well-defined invariantly as precisely this version of the principal symbol.
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Proposition 2.8. For P ∈ Diff`(M ;E), the lift of t(∂t + P ) to M2
H is a differential operator

tangent to the boundary, whose restriction to h̊f ∼= TM →M has the form

σ(P )− 1
` ζ · ∂ζ ∈ Diff`fib(TM ;π∗E),

where ζ · ∂ζ is the radial vector field on TM , Diff`fib(TM ;E) denotes translation-invariant
fiberwise differential operators on TM , and σ(P ) ∈ Diff`fib(TM ;π∗E) denotes the principal
symbol of P , regarded as a fiberwise differential operator on TM .

The action of t(∂t + P ) preserves Φk, and

N
(
t(∂t + P )A

)
=
(
σ(P )− 1

` ζ · ∂ζ −
k
`

)
N(A) (2.18)

Proof. The first claim follows from the fact that τ = 0 at hf, thus all terms of order O(τ) in
the local formulas above are vanishing there. To prove the second claim, we need to take into
account the factor of τ in A = τ−kN(A). To leading order the lift of tP commutes with τ−k,
so this factor doesn’t contribute any additional terms. However, from (2.16), the lift of t∂t is
1
` (τ∂τ − ζ · ∂ζ) and we have

τ∂τ (τ−kN(A)) = τ−k(τ∂τ − k)N(A),

which accounts for the additional factor in (2.18).

2.3.5 Heat Parametrix

The previous results give us a procedure to construct a parametrix G ∈ Φn such that t(∂t +
P )G = 0 ∈ Φn/Φ−∞ in an iterative manner. We will do this in a way which emphasizes the
similarities to the pseudodifferential parametrix construction for an elliptic operator.

Observe that N(A) ∈ ρ∞tf C∞
(
hf; End(E)

)
characterizes A ∈ Φk modulo Φk−1. Said another

way, the sequence

Φk−1 ↪−→ Φk N−→ S
(
TM ; End(E)

)
(2.19)

is exact.
To construct a heat parametrix, we must initially find G0 ∈ Φn such that(

σ(P )− 1
` ζ · ∂ζ −

n
`

)
N(G0) = 0,∫

fib
N(G0) = I.

(2.20)

Then from Proposition 2.8 and (2.19) it follows that −R0 := t(∂t + P )G0 ∈ Φn−1.
By induction, suppose that we have found Gj ∈ Φn−j , j = 0, . . . , k − 1 such that t(∂t +

P )(G0 + · · ·+Gk−1) = −Rk−1 ∈ Φn−k. We can then try to correct the error Rk−1 by finding
Gk ∈ Φn−k such that (

σ(P )− 1
` ζ · ∂ζ −

n−k
`

)
N(Gk) = N(Rk−1), (2.21)
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with no integral condition on the fibers.

Supposing that (2.20) and (2.21) can each be solved, we can construct G ∈ Φn such that
G ∼

∑∞
j=0Gj , meaning that

G−
N∑
j=0

Gj ∈ Φn−N−1

and then it follows that
t(∂t + P )G = −R ∈ Φ−∞,

G|t=0 = I.

Exercise 2.2. Prove the existence of the asymptotic sum G ∼
∑∞

j=0Gj . Up to some overall
negative powers, this reduces to Borel’s lemma in one dimension, which says that given
any sequence (aj : j ∈ N0) of real numbers, there exists a smooth function u(x) ∈ C∞c (R)
asymptotic to the power series

u(x) ∼
∞∑
j=0

ajx
j . (2.22)

a compactly supported cutoff function φ ∈ C∞c (R; [0, 1]) with φ(x) ≡ 1 for |x| ≤ 1 and φ(x) ≡ 0
for |x| ≥ 2. Then show that, for a sequence εj ↘ 0, the series

u(x) =
∞∑
j=0

ajx
jφ(x/εj)

converges pointwise (since for all x > 0 it is finite) and has the required asymptotic property.

To actually solve (2.20) and (2.21) requires some detailed consideration of the principal
symbol of P , hence we will now specialize to the case of primary interest.

2.3.6 Parametrix for Laplace-type operators

Definition 2.9. Say an operator P ∈ Diff2(M ;E) is a Laplace-type operator if its principal
symbol is

σ(P )(x, ξ) = |ξ|2 I ∈ C∞
(
T ∗M ; End(E)

)
,

where |ξ|2 = g(ξ, ξ) is computed with respect to the Riemannian metric on M . (In the
representation of σ(P ) on the cosphere bundle, the condition is equivalent to σ(P )(x, ξ) = I,
and in the representation of σ(P ) as a fiberwise translation-invariant differential operator, the
condition is equivalent to σ(P ) = ∆ζ , the fiberwise Laplacian with respect to the induced
Riemannian metric on TM .) We do not require P to be self-adjoint.

For a Laplace-type operator, we are reduced to considering solvability of the differential
operators

∆ζ − 1
2(ζ · ∂ζ + n− k) ∈ Diff2(Rn), k ∈ N0.
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Observe that the Fourier transform intertwines this operator with the operator

|ξ|2 + 1
2ξ · ∂ξ + k

2 ∈ Diff1(Rn)

solutions of which can be explicitly determined.

Indeed, let gj(ζ) ∈ S(Rn) denote the restriction of N(Gj) to a given fiber of TM (really this
is valued in matrices, but since we always work with scalar multiplies of the identity matrix, we
shall omit this from the notation), and ĝj(ξ) its Fourier transform. Then (2.20) is equivalent
to

(ξ · ∂ξ + 2 |ξ|2)ĝ0(ξ) = 0, ĝ0 ∈ S(Rn), ĝ0(0) = 1.

(The last condition is equivalent to the integral condition
∫
Rn g0(ζ) dζ = 1.) This has the

explicit solution

ĝ0(ξ) = e−|ξ|
2

=⇒ g0(ζ) = (4π)−n/2e−|ζ|
2/4,

as can be directly verified, and can be derived by solving the ODE ∂tu(t) = −2tu(t), u(0) = 1,
along each radial line. Clearly g0 ∈ S(Rn), and by uniqueness of solutions to first order ODE,
is the unique solution.

The higher order problem (2.21), which is equivalent to

(ξ · ∂ξ + 2 |ξ|2 + k)ĝk(ξ) = 2r̂k−1(ξ) ∈ S(Rn), (2.23)

can also be solved explicitly. Indeed, along a radial line, the homogeneous ODE ∂tu =
(−2t+ k/t)u has the fundamental solution tke−t

2
u(0), convolution with which solves the inho-

mogeneous problem. Thus (2.23) has the unique solution

ĝk(tξ) = 2

∫ t

0
(t− s)ke−(t−s)2 r̂k−1(sξ) ds, or

ĝk(ξ) = 2

∫ 1

0
|ξ|k+1 (1− r)ke−(1−r)2|ξ|2 r̂k−1(rξ) dr ∈ S(Rn).

Combining these results with the induction in §2.3.5, we conclude

Proposition 2.10. Let P ∈ Diff2(M ;E) be a Laplace-type operator. Then there exists a
parametrix G ∈ Φn = ρ∞tf τ

−nC∞
(
M2
H ; END(E)

)
such that

t(∂t + P )G = −R ∈ Φ−∞,

G|t=0 = I.
(2.24)

In particular, N(G)(ζ, x) = (4π)−n/2e−|ζ|
2/4I ∈ S

(
TM ; End(E)

)
.
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2.3.7 True solution

It remains to correct the final error R in (2.24). For this we consider the action of Schwartz
kernels in C−∞(R+ ×M2) as convolution operators:5,6

C−∞(R+ ×M2) 3 A∗ : C∞(R+ ×M)→ C∞(R+ ×M),

(A ∗ u)(t, x) =

∫ t

0

∫
M
A(t− s, x, y)u(s, y) dVolg(y) ds =:

∫ t

0
[Au(s)](t− s) ds.

The composition C∗ = (A ∗ B)∗ of convolution operators A and B is given by the Schwartz
kernel

C(t, x, z) =

∫ t

0

∫
M
A(t− s, x, y)B(s, y, z) dVolg(y) ds =

∫ t

0
A(t− s)B(s) ds.

The convolution point of view is natural in the context of initial value problems; observe
that for any A whose limit as an operator on M is appropriately well-defined at t = 0, we have

∂t(A ∗ u) = ∂t

∫ t

0
[Au(s)](t− s) ds

= [Au(t)](0) +

∫ t

0
[∂tAu(s)](t− s) ds

= A|t=0u|t=t + (∂tA) ∗ u.

(2.25)

(The first term comes from the fundamental theorem of calculus, with ∂t differentiating the
upper limit t, and in the second term ∂t has been taken inside the integral.) If you prefer, in
more spelled out notation,

∂t(A ∗ u) = ∂t

∫ t

0

∫
M
A(t− s, x, y)u(s, y) dVolg(y) ds

=

∫
M
A(0, x, y)u(t, y) dVolg(y) +

∫ t

0
∂tA(t− s, x, y)u(s, y) dVolg(y) ds.

In particular, the heat kernel conditions (∂t + P )H = 0, H|t=0 = I are equivalent to the
condition that

(∂t + P )H∗ = H|t=0 +
(
(∂t + P )H

)
∗ = I

as a convolution operator. (Perhaps we should write I∗ rather than I to emphasize the differ-
ence between the identity convolution operator I∗ = δ0(t)δdiag(x, y) and the time-independent
identity operator I = δdiag(x, y), but we shall not do so.)

5Hopefully there is no confusion arising from our identification of operators with their Schwartz kernels! As
a general rule if we do not specify the spatial coordinates x or y, then adjacency should be read as operator
composition.

6In general we should make some restrictions on either the distributions or the smooth functions on R+ at
t = 0 so that the action below is well-defined, but we will ignore this point since we do not require the most
general statement.
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Proposition 2.11. As a convolution operator, the heat parametrix G ∈ Φn of Proposition 2.10
satisfies

(∂t + P )G∗ = I −R′∗ (2.26)

where R′ = t−1R ∈ Φ−∞.

Proof. This follows from the condition G|t=0 = I as computed above, along with the fact that
t(∂t+P )G = −R, so (∂t+P )G = −t−1R =: −R′. Pulling t−1 back to M2

H gives R′ = ρ−2
tf ρ

−2
hf R,

but since R ∈ ρ∞tf ρ∞hfC∞
(
M2
H ; END(E)

)
these factors may be absorbed.

Now, the residual space Φ−∞ is easy to characterize:

Φ−∞ = ρ∞tf ρ
∞
hfC

∞(M2
H ; END(E)

)
consists of smooth kernels which vanish rapidly at all boundary faces, and in fact this equivalent
to

Φ−∞ ≡ τ∞C∞
(
(R+)τ ×M2; END(E)

)
= t∞C∞

(
(R+)t ×M2; END(E)

)
,

the space of kernels on the original space R+ ×M2 which are rapidly vanishing in t.

Proposition 2.12. If A ∈ Φ−∞ = t∞C∞
(
R+ ×M2; END(E)

)
, then the convolution operator

I −A∗ is invertible, with inverse

I − S∗ = I +
∞∑
j=1

(A∗)j , S∗ ∈ Φ−∞ (2.27)

Remark. The infinite series in (2.27) is called a Volterra series and A∗ for operators A ∈ Φ−∞

are sometimes referred to as Volterra operators. The series can be written explicitly in terms
of integrals over simplices:

∞∑
j=0

(A∗)j =
∞∑
j=0

∫
4j

A(tj) · · ·A(t1) dt1 · · · dtj , 4j = {(t1, . . . , tj) : 0 ≤ t1 ≤ · · · ≤ tj ≤ t}

Proof. Fix T > 0. Direct estimation shows that, if B1 and B2 are general convolution operators
such that

|B1(t, x, y)| ≤ Ck
tk

k!
, |B2(t, x, y)| ≤ C0, t ∈ [0, T ],

then the kernel B = B1 ∗B2 satisfies the pointwise estimate

|B(t, x, y)| ≤ C0Ck Vol(M)
tk+1

(k + 1)!
, t ∈ [0, T ].

By assumption A satisfies estimates of the form |A(t, x, y)| ≤ Ckt
k/k! for any k, hence by

induction it follows that the kernel, Aj , of (A∗)j satisfies

|Aj(t, x, y)| ≤ Ck
(
C0 Vol(M)

)j−1 tk+j−1

(k + j − 1)!
, t ∈ [0, T ].
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By the ratio test it follows that the Volterra series
∑

j(A∗)j converges pointwise for all t ≤ T ,

and since T was arbitrary, for all t. For any m ∈ N, α, β ∈ Nn, the kernel ∂mt ∂
α
x ∂

β
yA satisfies

similar estimates, so it follows that
∑

j(A∗)j is in C∞
(
R+×M2; END(E)

)
. Furthermore, since

k was arbitrary, it follows that S = −
∑∞

j=1(A∗)j is rapidly vanishing in t, which completes
the claim.

In light of Proposition 2.12, we let S ∈ Φ−∞ be determined by I − S∗ = (I − R′∗)−1 and
then we may define the true heat kernel via

H := G ∗ (I −R′∗)−1 = G ∗ (I − S∗) = G−G ∗ S. (2.28)

Then H satisfies
(∂t + P )H∗ = I (2.29)

(equivalently, (∂t + P )H = 0 and H|t=0 = I).

Theorem 2.13 (Heat kernel for a Laplace-type operator). For a Laplace-type operator P ∈
Diff2(M ;E), the kernel (2.28) constructed above is the unique solution to (2.29); in particular,
if P is a positive self-adjoint operator, then H = e−tP agrees with the heat kernel as defined
via the spectral measure. Moreover,

H ∈ Φn = ρ∞tf τ
−nC∞

(
M2
H ; END(E)

)
,

and H −G ∈ Φ−∞, so the asymptotic expansions of H and G at hf ⊂M2
H agree. In particular

N(H)(ζ, x) = (τnH)|h̊f∼=TM = (4π)−n/2e−|ζ|
2/4 ∈ S

(
TM ; End(E)

)
.

Proof. The uniqueness of H is equivalent to triviality of solutions with vanishing initial data:

(∂t + P )u = 0, u(0) = 0 =⇒ u ≡ 0. (2.30)

To prove (2.30), suppose u solves (∂t + P )u = 0 with u(0) = 0. First note that ∂tu|t=0 =
−Pu|t=0 = 0, and then using ∂t(∂t+P ) = (∂t+P )∂t and induction it follows that all derivatives
of u vanish at t = 0. Thus u can be extended to a smooth section u ∈ C∞(R ×M ;E) with
u = 0 for t ≤ 0. Next, observe that the L2(R ×M ;E) adjoint of ∂t + P is −∂t + P ∗, and
that P ∗ is a Laplace-type operator since P is. The operator −∂t + P ∗ is the time reversed
heat flow of P ∗, so from the construction above of a heat kernel above it follows that for any
φ ∈ C∞c (R ×M ;E), say with φ = 0 for t > T , we can solve (−∂t + P ∗)v = φ with v = 0 for
t > T . Then

(u, φ)L2(R×M ;E) =
(
u, (−∂t + P ∗)v

)
=
(
(∂t + P )u, v

)
= 0

and since φ was arbitrary, we conclude u = 0.
It remains to prove that G − H = G ∗ S is in the residual space Φ−∞. First, from the

mapping property in Proposition 2.6, for S ∈ Φ−∞ (or more generally any kernel which is
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smooth in t) it follows that (s, t) 7→ G(s)S(s− t) ∈ C∞
(
M2; END(E)

)
is continuous uniformly

in both s and t. Then

G ∗ S ∈ tC0
(
R+;C∞(M2; END(E))

)
,

since G ∗ S is the integral from 0 to t in s of a uniformly continuous function of s and t (with
values in C∞

(
M2; END(E)

)
. Then consider ∂t(G∗S). By (2.25) and the fact that convolution

is symmetric in t (i.e.,
∫ t

0 G(t− s)S(s) ds =
∫ t

0 G(s)S(t− s) ds), this is equal to

∂t(G ∗ S) = S +G ∗ (∂tS),

which is again in tC0
(
R+;C∞(M2; END(E))

)
since ∂tS is of the same type. By iteration, it

follows that G ∗ S is smooth and rapidly decreasing, i.e., in Φ−∞.

2.4 Trace class operators

Let us briefly digress to review the subject of trace-class operators. The goal is to characterize
those operators A on an infinite dimensional, separable, Hilbert space H such that the quantity

Tr(A) =
∑
i

(Aei, ei)

is well-defined and independent of the choice of orthonormal basis {ei}. All the ways of doing
this are a bit fiddly, and the path we shall take is via so-called Hilbert-Schmidt operators.

Definition 2.14. A bounded operator A on H is Hilbert-Schmidt if, for some choice of
orthonormal basis {ei}, the quantity

‖A‖2HS :=
∑
i

‖Aei‖2 <∞ (2.31)

is finite. Equivalently, if we denote by aij = (Aej , ei) the matrix coefficients of A, then (2.31)
is equivalent to the sum

‖A‖2HS =
∑
i,j

|aij |2 <∞. (2.32)

We denote the set of Hilbert-Schmidt operators on H by B2(H).

Proposition 2.15. The Hilbert-Schmidt operators form a 2-sided ideal in the algebra B(H)
of bounded operators on H, and (2.31) is independent of the choice of basis. Hilbert-Schmidt
operators are compact operators.

Proof. From (2.32) it is clear that A is Hilbert-Schmidt if and only if A∗ is, and ‖A‖HS =
‖A∗‖HS . From (2.31) it is clear that if A is Hilbert-Schmidt and B is bounded, then BA is
Hilbert-Schmidt, with

‖BA‖HS ≤ ‖B‖ ‖A‖HS ,
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and then so is AB = (B∗A∗)∗ by the first observation. It follows that the Hilbert-Schmidt
operators form a 2-sided ideal. Note that if U ∈ B(H) is unitary, then

‖UA‖HS = ‖AU∗‖HS = ‖A‖HS ,

from which it follows that ‖A‖HS is independent of the basis.
From (2.31) it is easy to show that A ∈ B2(H) is the norm limit of the finite rank operators

An = AΠn, where Πn =
∑n

i=1(ei, ·) ei is the projection onto the space spanned by the first n
vectors in the basis. It follows that A is compact.

In particular, if A is a self-adjoint Hilbert-Schmidt operator, then ‖A‖HS may be computed
with respect to the orthonormal basis of eigenvectors afforded by Theorem 1.47, from which it
follows that

A ∈ B2(H), A = A∗ =⇒ ‖A‖HS =
(∑

j

λ2
j

)1/2
,

where {λj} is the sequence of eigenvalues of A with multiplicity.
In fact, the H-S norm is associated to the Hilbert-Schmidt inner product

(A,B)HS =
∑
i

(Aei, Bei) =
∑
i

(B∗Aei, ei),

with respect to which B2(H) has the structure of a Hilbert space. The inner product is related
to the norm via the the usual polarization identity

(A,B)HS =
1

4

4∑
k=0

ik
∥∥A+ ikB

∥∥2

HS
. (2.33)

Replacing A and B by their adjoints and using A∗ + ikB∗ = (A+ (−i)kB∗) in (2.33) leads to
the identity

(A,B)HS = (A∗, B∗)HS . (2.34)

The H-S inner product leads to the initial definition of trace-class operators.

Definition 2.16. An operator C ∈ B(H) is trace-class if it has the form C = B∗A for
Hilbert-Schmidt operators A,B ∈ B2(H). The trace of C = B∗A is defined by

Tr(C) =
∑
i

(Cei, ei) = (A,B)HS , (2.35)

which is therefore independent of the choice of basis {ei} (and of the choice of A and B). The
set of trace-class operators is denoted B1(H).

It is not quite obvious that B1(H) is a linear subspace, but this follows by identifying
H ∼= H⊕H and then if Ci = B∗iAi for i = 1, 2, then

C1 + C2 =
(
B∗1 B∗2

)(A1

A2

)
.
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Then from the ideal property of B2(H), it follows that B1(H) is again a 2-sided ideal in B(H),
containing B2(H) and consisting of compact operators. Thus if we denote by B0(H) the compact
operators, then we have inclusions of ideals

B2(H) ⊂ B1(H) ⊂ B0(H) ⊂ B(H).

In particular, since C ∈ B1(H) is compact, by the spectral theorem, the operator |C| :=
(C∗C)1/2 is well-defined, with spectral resolution

|C| =
∑
j

µj(ei, ·)ei,

where
{
µ2
i

}
⊂ R+ are the eigenvalues of the positive compact operator C∗C. We refer to the

µj as the singular values of C. This leads to an alternative characterization of trace-class
operators:

Proposition 2.17. An operator C is trace-class if and only if C is compact and

‖C‖1 :=
∑
j

µj <∞. (2.36)

Proof. Suppose that C is compact and (2.36) holds. From

‖|C| ei‖2 =
(
(C∗C)1/2ei, (C

∗C)1/2ei
)

=
(
(C∗C)ei, ei

)
=
(
Cei, Cei

)
= ‖Cei‖2

it follows that there is an isometry between the range of C and the range of |C|, thus

C = U |C| , |C| = WC (2.37)

for some partial isometries U and W . Let D = |C|1/2 = (C∗C)1/4, defined again by the
spectral theorem, which has eigenvalues

{√
µj
}

. The hypothesis (2.36) implies that D is
Hilbert-Schmidt, and then from (2.37),

C = U |C| = UD2

is the product of Hilbert-Schmidt operators UD and D∗ = D.
Conversely, if C = B∗A is trace class, then it follows from (2.37) that |C| = (WB∗)A =

(BW ∗)∗A is trace class, and computing the trace using the basis {ei} of eigenvectors for |C|
leads to ‖C‖1 = Tr(|C|), proving (2.36).

Remark. In fact ‖C‖1 = Tr(|C|) gives a norm on B1(H) with respect to which it enjoys the
structure of a Banach space. More generally, for any p ∈ [1,∞), the Schatten class

Bp(H) 3 A ⇐⇒ A compact, and ‖A‖p =
(∑

j

µpj

)1/p
<∞

defines an ideal within the compact operators, such that Bp(H) ⊆ Bq(H) if q ≤ p, and these are
all complete with respect to the norms ‖A‖p = Tr(|A|p)1/p. Furthermore, there is a Hölder-type

estimate ‖AB‖1 ≤ ‖A‖p ‖B‖q when 1
p + 1

q = 1.
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Note that, in the case that C ∈ B1(H) is diagonalizable (say if C is self-adjoint, or more
generally normal), with eigenvectors {λj}, then µj = |λj | and the trace of C is given by

Tr(C) =
∑
j

λj . (2.38)

Proposition 2.18. If C is trace-class and D ∈ B(H) is an arbitrary bounded operator, then
Tr([C,D]) = 0.

Proof. The commutator [C,D] = CD − DC is trace-class since B1(H) is an ideal. Write
C = B∗A for A,B ∈ B2(H). Then,

Tr(CD) = (AD,B)HS = (B,AD)HS = (B∗, D∗A∗)HS = Tr(ADB∗)

= (DB∗, A∗)HS = (BD∗, A)HS = (A,BD∗)HS = Tr(DB∗A) = Tr(DC).

Remark. The commutator identity Tr([C,D]) = 0 often holds even when D is an unbounded
operator; Indeed, the proof above holds provided that AD and DB∗ are well-defined and
Hilbert-Schmidt. This is often true in the cases of interest, for instance when D is a positive
order (pseudo)differential operator and A and B can be taken to be smoothing operators (see
below).

2.4.1 Integral kernels

We consider now the case that H = L2(M) (or more generally L2(M ;E), though we shall omit
the bundles for notational convenience), for a Riemannian manifold (M, g). Fix an orthonormal
basis {ei(x)}. Then it is easy to show (using Fubini’s theorem) that{

ei(x) e∗j (y) : (i, j) ∈ N2
}

is an orthonormal basis for L2(M ×M).

From this we get a nice characterization of the Hilbert-Schmidt operators on L2(M) via their
Schwartz kernels.

Proposition 2.19. A ∈ B2

(
L2(M)

)
if and only if A has Schwartz kernel

KA ∈ L2(M ×M),

and the map B2

(
L2(M)

)
→ L2(M ×M), A 7→ KA is an isometry: ‖A‖HS = ‖KA‖L2(M×M) .

Proof. If KA ∈ L2(M×M), then it defines a bounded operator, A, on L2(M), and the Hilbert-
Schmidt norm of A is

‖A‖2HS =
∑
i

‖Aei‖2L2(M) =
∑
i,j

(Aei, ej)
2

=
∑
i,j

∣∣∣ ∫
M×M

KA(x, y) ei(y) e∗j (x) dVolx dVoly

∣∣∣2 =
∑
i,j

(KA, ei⊗e∗j )2
L2(M×M) = ‖KA‖2L2(M×M) .
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Conversely, ifA ∈ B2

(
L2(M)

)
then it has a kernel representationKA(x, y) =

∑
i,j aij ei(x) e∗j (y)

and

‖KA‖2L2(M×M) =

∫
M×M

∑
i,j

∣∣aij ei(x) e∗j (y)
∣∣2 dVolx dVoly

=
∑
i,j

∫
M×M

∣∣aij ei(x) e∗j (y)
∣∣2 dVolx dVoly =

∑
i,j

|aij |2 = ‖A‖2HS .

This leads to the following result, which the author has seen referred to as Lidskii’s Theorem,
though other sources use that name to refer to the assertion (2.38).

Theorem 2.20 (Lidksii’s theorem). If A is a trace class operator on L2(M), and the restriction
of the Schwartz kernel of A to the diagonal Mdiag ⊂M ×M is well-defined, then

TrA =

∫
M
A(x, x) dVolx

Remark. Observe that both hypotheses are necessary. There exist non-trace class operators
whose Schwartz kernels admit a well-defined restriction to the diagonal with

∫
M A(x, x) dx <

∞, and there exist trace-class operators whose restriction to the diagonal is ill-defined. The
theorem is most useful in the case that the kernel of A lies in C0(M ×M), and then both
hypotheses are satisfied since A ∈ L2(M ×M) = B2

(
L2(M)

)
.

Proof. Let A = B∗C for Hilbert-Schmidt operators B and C. In terms of kernels,

A(x, y) =

∫
M
B∗(x, z)C(z, y) dVolz. =

∫
M
B(z, x)C(z, y) dVolz. (2.39)

By Proposition 2.19, TrA = (C,B)HS = (C,B)L2(M×M), so

TrA =

∫
M×M

B(z, x)C(z, x) dVolz dVolx =

∫
M
A(x, x) dVolx

by (2.39) and the hypothesis that A|M is well-defined.

Corollary 2.21. Let A ∈ Ψ−∞(M ;E) be a smoothing operator. Then A is a trace class
operator on L2(M ;E) with

TrA =

∫
M

trA(x, x) dx,

where tr : C∞(M ; End(E))→ C∞(M) denotes the fiberwise trace.
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2.5 Heat Trace and Weyl asymptotics

Returning to the heat equation for a Laplace-type operator P ∈ Diff2(M ;E), we may apply
Lidskii’s theorem to the heat kernel H = e−tP for any fixed t > 0, since this has kernel in
C∞

(
M2; END(E)

)
. We conclude that

Tr e−tP =

∫
Mdiag

trH(t, x, x) dVolg(x), t > 0,

where the integral is taken over {t} ×Mdiag ⊂ M2
H . Since H (and therefore also trH) has a

complete asymptotic expansion on M2
H , it follows that Tr e−tP has an asymptotic expansion,

which may be computed by integrating over the “lifted diagonal” R+ ×Mdiag ⊂ M2
H . The

latter intersects the heat face h̊f ∼= TM at the zero section, and we conclude:

Proposition 2.22. The heat trace Tr e−tP has a complete short-time asymptotic expan-
sion as t↘ 0 of the form

Tr e−tP ∼ t−n/2
∞∑
k=0

akt
k/2, (2.40)

with a0 =
∫
M trN(H)(0, x) dVolg = (4π)−n/2 Vol(M) Rank(E).

Remarks.

• By taking parity considerations into account with respect to the involution ζ 7→ −ζ on hf,
it is possible to show that all of the terms of order O(τ2n+1) in the asymptotic expansion
of H are odd with respect to the involution, hence evaluate to 0 at ζ = 0. In particular,
all the coefficients ak in (2.40) with k odd are vanishing.

• By working a bit harder, it is possible in principle to compute the lower order asymptotics
as well, though this quickly becomes quite difficult. For instance, for P = ∆, the scalar
Laplacian,

a2 = (4π)−n/2
1

6

∫
M

scal dVolg

is proportional to the integral of the scalar curvature of g, and a4 involves the square
integrals of the scalar, Ricci and full curvature tensors. In general the coefficients are
integrals of polynomials in covariant derivatives of the curvature tensors of g, but they
quickly get out of hand: see [Gil08] for a general survey (the formula for a6 on page 5
occupies nine lines). The exact formulas are typically computed by writing the a2n in
terms of polynomials with undetermined coefficients, and then computing the explicit
heat kernel in sufficiently many special cases to fix the coefficients.

While we are on the topic, let us digress for a moment to consider the asymptotic ex-
pansion of the heat trace as t → +∞. Knowing that the heat kernel is trace class for
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each fixed t > 0, we can read this asymptotic expansion off from the spectral resolution
e−tP =

∑
λj∈Spec(P ) e

−tλej(x)e∗j (y):

Tr e−tP =
∑

λj∈Spec(P )

e−tλjNj , Nj = dim Null(P − λj).

The following is then immediate:

Proposition 2.23. The long-time asymptotic expansion of the heat trace is

Tr e−tP = dim Null(P ) +O(e−tλ1), t→ +∞. (2.41)

Returning to the discussion started near the beginning of this chapter, now that we know
that e−tP is trace-class for t > 0, it follows that the computation

Tr e−tP = Tr

∫
R+

e−tλ dE(λ) =

∫
R+

e−tλ dµ(λ)

is justified, where we recall that dE(λ) is the spectral measure of P and dµ(λ) = Tr dE(λ) is
the counting measure on eigenvalues of P . We can now make use of the following result to get
information about the asymptotics of dµ(λ) as λ→∞.

Proposition 2.24 (Karamata’s Tauberian Theorem). If µ is a positive measure on R+ and∫
R+

e−tλ dµ(λ) ∼ at−α, as t→ 0,

for some a ∈ R, α ∈ (0,∞), then∫ l

0
dµ(λ) ∼ a

Γ(α+ 1)
lα, as l→∞.

Proof. This rather slick proof comes from [Tay96b], Chapter 8, Prop. 3.2. Define the measure
dν(λ) = λα−1 dλ, and for t ∈ (0,∞) set dµt(λ) = tαdµ(λ/t). Notice that dνt(λ) ≡ dν(λ) is
independent of t. The hypothesis is that limt→0 t

α
∫∞

0 e−tλ dµ(λ) = a, which can be written as

lim
t→0

∫ ∞
0

e−λ dµt(λ) =
a

Γ(α)

∫ ∞
0

e−λ dν(λ), (2.42)

since Γ(α) =
∫∞

0 e−λλα−1 dλ =
∫∞

0 e−λ dν(λ).

The desired conclusion is that liml→∞ l
−α ∫ l

0 dµ(λ) = a
Γ(α+1) = a

αΓ(α) which, if we set

l = t−1 can be written as

lim
t→0

∫ 1

0
dµt(λ) =

a

Γ(α)

∫ 1

0
dν(λ)
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since α−1 =
∫ 1

0 λ
α−1 dλ.

Thus the goal is to show

lim
t→0

∫
R+

f(λ) dµt(λ) =
a

Γ(α)

∫
R+

f(λ) dν(λ) (2.43)

holds for f(λ) = χ[0,1](λ), the characteristic function of [0, 1], assuming that (2.43) holds for

f(λ) = e−λ.

By rescaling sλ 7→ λ, (and using the invariance dνt = dν), it follows that (2.43) holds for
all f(λ) = e−sλ, s > 0 (both sides of (2.43) pick up a factor of s−α). This subalgebra sepa-
rates points, so by the Stone-Weirstrass theorem is dense in C0(R+), the space of continuous
functions on R+ vanishing at infinity.

Since (2.42) implies that the measures e−λdµt(λ) are uniformly bounded for t ∈ (0, 1], it
follows by density that (2.43) holds for all f of the form e−λg(λ), where g(λ) ∈ C0(R+), but
since χ[0,1] can be approximated in measure by functions in this form, the result follows.

Combining Propositions 2.22 and 2.24, we have proved the following version of Weyl’s
asymptotic formula.

Theorem 2.25 (Weyl asymptotics). Let P ∈ Diff2(M ;E) be a positive Laplace-type operator,
and let N(l) = µ([0, l]) = |{λj : 0 ≤ λj ≤ l}| be the eigenvalue counting function of P . Then

N(l) =
σn Vol(M) Rank(E)

(2π)n
ln/2 + o(ln/2), l→∞, (2.44)

where σn = πn/2/Γ(n/2 + 1) is the volume of the unit ball in Rn.

Remark. We have incorporated part of the constant (4π)n/2Γ(n/2+1) into σn in the statement
above. A somewhat more elegant way to express the above is to note that σn Vol(M) is
equal to the volume of the unit ball bundle in T ∗M . Furthermore, if we use the alternate
convention of writing eigenvalues of P as λ = ν2, then with respect to the counting function
Nν(l) =

{
ν : ν ≤ l, (P − ν2) not invertible

}
, the asymptotic formula may be written

Nν(l) = (2π)−n Rank(E) Vol(B∗l ) + o(ln), B∗l = {(x, ξ) : |ξ| ≤ l} ⊂ T ∗M.

This is an important example of the so-called quantum-classical correspondence, saying that
something from quantum mechanics, namely the number of energy levels (eigenvalues) of the
quantum system associated to the observable P , is related to something from classical mechan-
ics, namely the volume of the corresponding sublevel set of phase space T ∗M .

With P = ∆ ∈ Diff2(M) the scalar Laplacian, we obtain one of the most basic inverse
spectral results about Riemannian manifolds, namely, if two Riemannian manifolds M1 and
M2 are isospectral, then they must necessarily have the same volume:

Spec(∆1) = Spec(∆2) =⇒ Vol(M1) = Vol(M2).
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Our version, (2.44), of Weyl’s asymptotic formula is rather weak, in that the only informa-
tion about the remainder

R(l) = N(l)− σn
(2π)n

Vol(M) Rank(E) ln/2

is that R(l) = o(ln/2), which is to say that liml→∞ l
−n/2R(l) = 0. Considerable effort has been

put into obtaining an improved estimate on R(l), using more advanced techniques. The best
general result is that

R(l) = O(l(n−1)/2)

which is sharp, as can be seen in the case that M = Sn is a standard n-sphere. Better
estimates are possible when additional conditions on M are imposed: a celebrated result of
Duistermaat and Guillemin states that if the set of periodic geodesics on M has measure zero,
then R(l) = o(l(n−1)/2).

The typical method for obtaining these improved remainders is to replace the heat trace

by the wave trace, Tr eit
√

∆, where eit
√

∆ denotes the unitary fundamental solution to the
evolution equation (−i∂t +

√
∆)u = 0. (Composing the operator −i∂t +

√
∆ with its adjoint

gives the wave operator −∂2
t + ∆.) The fundamental solution to a hyperbolic equation such as

the wave equation has a much more delicate analytical structure, and involves much more of
the global geometry of M , in particular the global behavior of the geodesic flow. For instance,

the wave trace Tr eit
√

∆ has singularities for a discrete set of t consisting of the lengths of closed
geodesics on M .
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Atiyah-Singer index theorem

3.1 Overview

Our next subject concerns computation of the index of elliptic operators. Recall from §1.3.3
that an elliptic operator D ∈ Ψs(M ;E0, E1), s > 0 is Fredholm; in particular

dim Null(D), dim Null(D∗) <∞.

Unfortunately, computing dim Null(D) is quite difficult in principle, as it depends sensitively
on all the information in D; for instance, a small perturbation of D (even by a lower order
term) may cause dim Null(D) to change quite drastically.

Definition 3.1. The index of a Fredholm operator D is the quantity

ind(D) = dim Null(D)− dim Null(D∗) ∈ Z.

The remarkable property of the index is that it is extremely stable with respect to perturbations
of D. In fact the index is a homotopy invariant, meaning that if Dt, t ∈ [a, b] is a continuous
one-parameter family of Fredholm operators, then ind(Dt) is constant.

This leads us to the question of computing ind(D) effectively. In the case that D ∈
Diff1(M ;E0, E1) is an elliptic operator such that D∗D and DD∗ are Laplace operators (in this
case we say D is a Dirac operator, see more on this below), we can extract the index from a
sufficient understanding of the heat kernels e−tD

∗D and e−tDD
∗
.

To motivate this, observe that Null(D) = Null(D∗D) by the identity (D∗Du, u) = ‖Du‖2.
Likewise Null(D∗) = Null(DD∗). As observed in Proposition 2.23, the long time behavior of
the heat trace Tr e−tD

∗D is dominated by the limit

lim
t→∞

Tr e−tD
∗D = dim Null(D∗D) = dim Null(D).

In particular, we have

ind(D) = lim
t→∞

(
Tr e−tD

∗D − Tr e−tDD
∗)
.
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However, as pointed out by McKean and Singer, the difference Tr e−tD
∗D − Tr e−tDD

∗
is

actually constant. One way to see this is to observe that

De−tD
∗D = e−tDD

∗
D,

which follows by applying D to the equation (∂t+D∗D)u = 0, u(0) = u0 and using uniqueness
of solutions. Then we may compute

∂t Tr
(
e−tD

∗D − e−tDD∗
)

= Tr
(
D∗De−tD

∗D −DD∗e−tDD∗
)

= Tr
(
D∗e−tDD

∗
D −DD∗e−tDD∗

)
= Tr

(
[D∗e−tDD

∗
, D]
)

= 0

using the fact that the trace of a commutator involving smoothing operators vanishes (see the
remark following Proposition 2.18).

Alternatively, one can show that D∗D and DD∗ have the same strictly positive spectrum
with isomorphic eigenspaces. Then from the spectral representation

Tr e−tD
∗D =

∑
λj∈Spec(D∗D)

e−tλj dim Null(D∗D − λj),

and similarly for Tr e−tDD
∗
, it follows (formally at least), that

Tr e−tD
∗D − Tr e−tDD

∗
= ind(D) +

∑
λj>0

e−tλj
(

dim Null(D∗D − λj)− dim Null(DD∗ − λj)
)

= ind(D).

Exercise 3.1. Show that D∗D and DD∗ have the same positive spectrum and that D is an
isomorphism from the eigenspace Null(D∗D − λ) to the eigenspace Null(DD∗ − λ) if λ > 0.
(Hint: Apply D to the equation (D∗D − λ)u = 0, then apply D∗.)

In any case, we obtain the McKean-Singer formula

ind(D) = Tr
(
e−tD

∗D − e−tDD∗
)
, ∀ t ∈ R+, (3.1)

which raises the possibility of using the short time heat asymptotics as t ↘ 0 to compute
ind(D). In fact, by the magic of Z2 grading, we can make the difference of traces in (3.1)
appear more like the trace of a single heat kernel. Indeed, if we combine the bundles E0 and
E1 into the single Z2 graded bundle E = E0 ⊕ E1, then D and D∗ can be combined into the
single operator

D̃ =

(
0 D∗

D 0

)
acting on the space of sections

L2(M ;E) = L2(M ;E0)⊕ L2(M ;E1),
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which obtains a Z2 grading from the one on E. The operator D̃ is self-adjoint, and

D̃2 =

(
D∗D 0

0 DD∗

)
.

In the Z2 graded formalism, the trace of an endomorphism A =

(
A00 A10

A01 A11

)
∈ End(V0 ⊕ V1)

is replaced by the supertrace (see §3.2.6)

StrA = TrA00 − TrA11,

and the infinite dimensional analogue leads to the formula

ind(D) = Str e−tD̃
2

=

∫
Mdiag

strH(t, x, x)dVolg(x), ∀ t ∈ R+, (3.2)

where str : C∞
(
Mdiag,End(E)

)
→ C∞(M) is the fiberwise supertrace on the bundle End(E).

Note that D̃2 is a Laplace-type operator, so by the results of Chapter 2, the Schwartz

kernel of e−tD̃
2

may be considered on the heat space M2
H , where it has a complete asymptotic

expansion at hf, and just as in Proposition 2.22 for the heat trace, we obtain an asymptotic
expansion

Str e−tD̃
2 ∼ t−n/2

∞∑
k=0

bkt
k/2,

with the bk obtained in the same way as the ak in (2.40), except that the fiberwise trace is

replaced by the supertrace. Unfortunately, as indicated by the constancy of Str e−tD̃
2
, all of

the coefficients bk for k < n actually vanish. For instance,

b0 = (4π)−n/2 Vol(M) str(IE) = (4π)−n/2 Vol(M)
(

Rank(E0)− Rank(E1)
)

= 0,

since Rank(E0) must equal Rank(E1) ellipticity of D.
Thus, to use the approach of Chapter 2, we would in principle have to compute the coef-

ficients in asymptotic expansion of H(t, x, y) at hf ⊂ M2
H to high order, which is a difficult

prospect. Fortunately, there is a very clever trick due to Ezra Getzler1 wherein the bundle
End(E) is rescaled with respect to t (with various components rescaled by different degrees),
after which the coefficient of interest in the supertrace expansion of the heat kernel becomes
the leading one. The cost of doing this is that the model operator over hf is changed from
something like ∆+ζ ·∂ζ to something more closely resembling the quantum harmonic oscillator
∆ + |ζ|2. Nevertheless, there is still an explicit solution to the new model problem given by
Mehler’s formula (see §3.3.3 below).

Once again our approach follows [Mel93] (see also [Alb12]), using the heat space to ana-

lyze the kernel of e−tD̃
2
. For alternative approaches to the local index formula via the heat

supertrace, see [BGV92] and/or [Roe99].

1Accomplished when he was an undergraduate, no less!
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3.2 Dirac operators

Note that the convention for the Clifford algebra in these notes differs from [Mel93]; instead
we follow the conventions of the excellent book [LM89], which serves as a reference for this
entire section.

We will be interested in self-adjoint, first order differential operators D ∈ Diff1(M ;E)
such that D2 is a Laplace-type operator2. In particular, this means that the principal symbol
satisfies

σ(D2)(x, ξ) = σ(D)(x, ξ)2 = |ξ|2 IE , ∀ ξ ∈ T ∗xM.

Let us consider what this means algebraically. Fixing x ∈ M for the moment, and writing
V = T ∗xM , we may define a map3

c : V → End(Ex), ξ 7→ −iσ(D)(x, ξ), such that

c(ξ)2 = − |ξ|2 I

It will be worth our while to consider the algebraic implications of this identity, which says
that c induces a representation of the Clifford algebra of V on Ex.

3.2.1 Clifford algebras and representations

Definition 3.2. Let (V, 〈·, ·〉) be a real vector space with a nondegenerate bilinear form. The
Clifford algebra C`(V ) = C`(V, 〈·, ·〉) is the associative algebra defined by the quotient

C`(V, 〈·, ·〉) := T (V )/I, T (V ) =

∞⊕
j=0

V ⊗j ,

I =
〈
v ⊗ v + |v|2 1

〉
= 〈v ⊗ w + w ⊗ v + 2〈v, w〉 1〉

of the tensor algebra of V by the ideal generated by elements of the form v⊗ v+ |v|2 1, where
1 ∈ V ⊗0 ≡ R is the unit.

Then C`(V ) is the universal algebra generated by V and satisfying v2 = − |v|2 (equivalently
vw + wv = −2〈v, w〉), meaning that any linear map φ from V to an algebra A whose image
satisfies this relation extends to a unique map φ̃ : C`(V )→ A.

We denote the complexified Clifford algebra by C`(V ) = C`(V ) ⊗R C. This is equivalent
to the Clifford algebra over C of the complex vector space V ⊗R C, with the quadratic form
extended complex linearly4.

The Clifford algebra is defined for a bilinear form of any signature (see [LM89]), though
we shall be solely concerned with the case that it is positive definite, which we assume from

2Such as D̃ in the previous section, but we will drop the tilde and denote this simply as D from now on.
3The introduction of the somewhat strange seeming sign −i in the formula is a choice which leads to the

standard convention for the Clifford algebra below. In fact, you can think of it as undoing the i way back in
the definition (1.3) of the principal symbol.

4Note that the quadratic form on V ⊗ C is related to a complex bilinear, as opposed to a Hermitian form.



Chapter 3. Atiyah-Singer index theorem 81

now on. (Note that there is no such thing as signature in the complex case, a fact which
considerably simplifies the theory of complex Clifford algebras.)

In practice it is easiest to work with an orthonormal basis {e1, . . . , en} for V , and then
C`(V ) is generated as an algebra over R by {1, e1, . . . , en}, subject to the relations

e2
i = −1 and eiej + ejei = 0, i 6= j. (3.3)

From this it is clear that C`(V ) has a basis given by

{ei1ei2 · · · eik : i1 < i2 < · · · < ik, 0 ≤ k ≤ n} ,

and therefore dim C`(V ) = 2n. Note that there is a natural embedding V ↪→ C`(V ) given by
the span of those basis elements with k = 1. In fact, there is a natural filtration on C`(V ):

R = C`(0)(V ) ⊂ C`(1)(V ) ⊂ · · · ⊂ C`(n)(V ) = C`(V ), C`(j)(V ) · C`(k)(V ) ⊂ C`(j+k)(V ),

where C`(k)(V ) is the linear span of those basis elements ei1 · · · eil with 0 ≤ l ≤ k (or more

invariantly, the image of the filtration
∑k

l=0 V
⊗l of T (V ) in the quotient). Note that we are

forced to include elements with length less than k in order that the filtration is compatible
with multiplication. There are short exact sequences

C`(k−1)(V ) ↪→ C`(k)(V )→ ΛkV

for each k, which taken together form a natural isomorphism of vector spaces (not of algebras!)

C`(V )
∼=→ ΛV =

n⊕
j=0

ΛnV. (3.4)

The inverse map ΛV → C`(V ), can be written in terms of a basis by sending ei1 ∧ · · · ∧ eik 7→
ei1 · · · eik . We will sometimes write ΛkV ⊂ C`(V ) for the inverse image of ΛkV with respect
to the isomorphism above.

Even though C`(V ) is not graded as an algebra by Z, it does admit a Z2 grading. Indeed,

C`(V ) = C`0(V )⊕ C`1(V ), C`i(V ) · C`j(V ) ⊂ C`i+j(mod 2)(V ),

C`0(V ) = span {ei1 · · · eik : k even} , C`1(V ) = span {ei1 · · · eik : k odd} .

(Please note the notational distinction between the components C`(j)(V ) of the filtration and
the summands C`j(V ) of the Z2 grading!) Alternatively, the involution α ∈ Aut(V ) given by
α(v) = −v can be extended to an involution on C`(V ) and then C`0(V ) and C`1(V ) are its
+1 and −1 eigenspaces, respectively. Note that V = C`1(V ) ∩ C`(1)(V ).

For each n, we let C`n = C`(Rn) denote the Clifford algebra of Euclidean n-space with
the standard inner product, and C`n its complexification. A choice of orthonormal basis
{e1, . . . , en} for (V, q) identifies C`(V ) with C`n and C`(V ) with C`n. Since we will be primarily
interested in complex representations below, we will focus on the complex algebras C`n.
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Consider the low dimensional cases. In the first case, C`1 is generated by {1, e1}, and we
have

C`1 ∼= C⊕ C (3.5)

as an algebra, under the identification 1 7→ (1, 1), e1 7→ (i,−i). (The Z2 grading on C ⊕ C is
the splitting into vectors of the form (a, a) and those of the form (a,−a)).

Next, C`2 is generated as a vector space by {1, e1, e2, e1e2}, with multiplication determined
by the relations (3.3). This can be identified with the algebra Mat2(C) of 2 × 2 complex
matrices. Indeed, a basis for the latter space is given by the classical Pauli matrices5

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
−1 0

)
σ2 =

(
0 i
i 0

)
, σ3 = γ1γ2 =

(
i 0
0 −i

)
, (3.6)

and these are easily seen to satisfy the same relations as {1, e1, e2, e1e2}, so 1 7→ σ0, ei 7→ σi,
i = 1, 2 defines an isomorphism

C`2 ∼= Mat2(C). (3.7)

The fundamental periodicity result is the following.

Proposition 3.3. For each n, there is an isomorphism

C`n ∼= C`n−2 ⊗ C`2.

In particular,

C`2n ∼= Mat2n(C), C`2n+1
∼= Mat2n(C)⊕Mat2n(C). (3.8)

Proof. First we construct a map f : Cn → C`n−2 ⊗ C`2 satisfying the Clifford relations. This
is accomplished by defining

f(ej) = i ej ⊗ e1e2, 1 ≤ j ≤ n− 2,

f(en−1) = 1⊗ e1, f(en) = 1⊗ e2.

Then it is easy to check that f(ej)f(ek) + f(ek)f(ej) = −2δjk(1 ⊗ 1), so by the universal

property, f extends to a homomorphism f̃ : C`n → C`n−2 ⊗ C`2. This is easily seen to map
onto a set of generators, so f̃ is surjective, and since the dimensions of both spaces are the
same, f̃ is an isomorphism. The identifications (3.8) follows by induction from the base cases
(3.5) and (3.7).

Remark. The periodicity of C`n is intimately related to Bott periodicity in complex topological
K-theory. The real Clifford algebras C`n satisfy the 8-periodic identity C`n ∼= C`n−8 ⊗ C`8
(though the proof requires consideration of Clifford algebras with quadratic forms of arbitrary
signature), which is in turn related to the 8-fold periodicity of real topological K-theory.

5listed here possibly in a nonstandard order with nonstandard signs
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According to the result, C`2n+1
∼= Mat2n(C) ⊕ Mat2n(C) contains two copies of C`2n ∼=

Mat2n(C), and one might suppose that these are related to the Z2 grading. Indeed, in the
other direction, under the identification of Mat2n(C) with C`2n, the Z2 grading C`02n ⊕ C`12n
becomes the grading Mat0

2n(C)⊕Mat1
2n(C) where Mat0

2n(C) consists of block diagonal matrices(
A 0
0 B

)
and Mat1

2n(C) consists of off-diagonal matrices

(
0 A
B 0

)
(this follows from (3.6) and

induction). Identifying these with A⊕ B shows that C`2n contains two copies of C`2n−1, one
for each component of the Z2 grading. Directly at the level of Clifford algebras, this is the
following result.

Proposition 3.4. For each n, there is an isomorphism

C`n ∼= C`0n+1.

Proof. As in the previous proof, we define a map Cn → C`0n+1 by

f(ej) = ejen+1, 1 ≤ j ≤ n.

This satisfies f(ej)
2 = ejen+1ejen+1 = −e2

je
2
n+1 = −1 so extends to a homomorphism f̃ :

C`n → C`0n+1. It is easy to see that the image of f̃ contains all elements of the form ei1 · · · ei2k ,

so f̃ is surjective, and therefore an isomorphism by dimensionality.

Definition 3.5. A representation of C`(V ) is a (finite dimensional) real vector space E along
with an algebra homomorphism ρ : C`(V )→ End(E). We say E is reducible if E = E′ ⊕E′′
with nontrivial summands, with ρ = ρ′ ⊕ ρ′′ : C`(V ) → End(E′) ⊕ End(E′′). Otherwise E is
irreducible. By finite dimensionality, every representation is a finite direct sum of irreducible
ones.

We say E is a graded representation if E = E0 ⊕ E1 and

C`j(V ) : Ek → Ej+k(mod 2)

Equivalently, ρ is a homomorphism of graded algebras, meaning ρ : C`j(V )→ Endj(E), where
End0(E) = Hom(E0, E0)⊕Hom(E1, E1) and End1(E) = Hom(E0, E1)⊕Hom(E1, E0).

We say (E, ρ) is a complex representation if dimR(E) is even and there is a complex
structure J ∈ Aut(E) such that J2 = −I and which commutes with ρ(a) for all a ∈ C`(V ). In
this case E obtains the structure of a complex vector space and ρ extends to a homomorphism
ρ : C`(V )→ EndC(E). We consider only complex representations below.

Example 3.6. The most obvious example of a nontrivial representation of C`(V ) is its action
on itself by left multiplication. Using (3.4), we can regard ΛV as a representation, and it is
easy to check that the action is generated by

ρ : C`(V )→ End(ΛV ),

ρ(v) = v ∧ · − v y ·, v ∈ V.
(3.9)
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Notice that this is exactly the action defined by the principal symbol of the Hodge-de Rham
operator d+ d∗ on forms (c.f. examples 1.7, 1.10 and 1.20).

This representation is also graded with respect to ΛV = ΛevenV ⊕ΛoddV , which is of course
induced by the identification with C`(V ) = C`0(V )⊕ C`1(V ).

Propositions 3.3 and 3.4 lead immediately to a complete classification of the complex ir-
reducible representations of Clifford algebras, since Matn(C) has a unique irreducible repre-
sentation on Cn (it is a so-called simple algebra), and Matn(C) ⊕Matn(C) has two distinct
irreducible representations on Cn given by projection to one or the other factors.

Proposition 3.7. The Clifford algebra C`2n has a unique irreducible representation S2n with
dimC(S2n) = 2n. The Clifford algebra C`2n+1 has two inequivalent irreducible representations
S+

2n+1 and S−2n+1, each of dimension 2n.

Recalling that the Z2 grading on Mat2n(C) ∼= C`2n is into block diagonal and off-diagonal
2n−1 × 2n−1 matrices, it follows by writing C2n = C2n−1 ⊕ C2n−1

that the fundamental repre-
sentation S2n of C`2n is a graded representation. More abstractly, Proposition 3.4 leads to the
following result.

Proposition 3.8. There is an equivalence of categories between graded representations of C`n
and (ungraded) representations of C`n−1.

Proof. In one direction, if E = E0 ⊕ E1 is a graded representation of C`n, then E0 is a
C`n−1

∼= C`0n representation. (Note that E1 is also a representation, possibly a different one.)
Conversely, given a representation F of C`n−1, we can set E = C`n⊗C`0nF , which makes E into
a graded C`n representation since C`0n⊕C`1n is a graded representation of C`n with respect to
left multiplication.

It follows that the unique irreducible representation S2n of C`2n splits as S2n = S+
2n ⊕ S−2n

with S+
2n and S−2n the two inequivalent C`2n−1 representations. Thus S2n has two inequivalent

gradings, either S0 ⊕ S1 = S+ ⊕ S−, or S0 ⊕ S1 = S− ⊕ S+. On the other hand, the unique
irreducible graded representation of C`2n+1 has the form S0

2n+1 ⊕ S1
2n+1, with each factor

isomorphic to S2n.

There is a nifty way to distinguish between these representations. In C`n, define the
volume element by

ωn = ipe1 · · · en, p =

{
n/2, n even,

(n+ 1)/2, n odd.
(3.10)

Then it is straightforward to check that

ω2
n = 1, and ejωn = (−1)n+1ωnej ∀ j.

In particular, in odd dimensions, ω2n+1 is central, and the two distinct irreducible representa-
tions S±2n+1 are distinguished by ρ(ω2n+1) = ±1.
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In even dimensions, the splitting S2n = S+
2n ⊕ S−2n may be defined according to the ±1

eigenspaces of ω2n. Since the ej anti-commute with ω2n in this case, it follows that ele-
ments of C`02n commute with ω2n while elements of C`12n anti-commute with it, so this is a
graded representation. Furthermore, since ω2n ≡ ω2n−1e2n is consistent with the identification
C`2n−1

∼= C`02n, it follows that S±2n
∼= S±2n−1.

Definition 3.9. We refer to S2n = S+
2n ⊕ S−2n as the (graded) spinor representation of C`2n.

The representations S±2n = S±2n−1 are called the half-spinor representations of C`02n ∼= C`2n−1.

Remark. As described above, the spinor representation is defined via the isomorphisms C`2n ∼=
Mat2n(C). For a direct construction, consider ΛCn =

⊕
k ΛkCCn. The standard Hermitian

inner product (z, w) = zw extends to one on ΛCn and defines an interior product

v y · : ΛkCCn → Λk−1
C Cn, v ∈ Cn

as the adjoint to the operation v ∧ · ∈ Hom(Λk−1
C Cn,ΛkCCn). Then

R2n ∼= C 3 v 7→ v ∧ · − v y · ∈ EndC(ΛCCn)

defines an R-linear6 map satisfying the Clifford relations, hence extends to a nontrivial com-
plex representation of C`2n, which by reason of dimension must be the unique irreducible
representation S2n.

Note that this is not the same as the complexification of the representation of Example 3.6,
as the latter has complex dimension 22n rather than 2n.

3.2.2 Dirac operators on a manifold

We now transfer the theory of Clifford algebras to the tangent space of a manifold. Recall that
the tangent bundle TM →M of an oriented Riemannian manifold is associated to a principal
SO(n) bundle

PSO →M, (3.11)

meaning PSO is a locally trivial fiber bundle whose fibers are principal SO(n) spaces; equiv-
alently PSO carries a free right SO(n) action whose quotient is precisely the map (3.11). Ex-
plicitly, PSO may be realized as the (orthogonal) frame bundle

PSO = {φ ∈ Iso(Rn, TxM) : x ∈M} (3.12)

consisting of oriented orthogonal isomorphisms from (Rn, gEuc) into the tangent spaces (TxM, gx),
with the right action by SO(n) given by precomposition: SO(n) 3 a : φ 7→ φ ◦ a.

The tangent bundle TM may be recovered from PSO by the associated bundle construc-
tion:

TM = PSO ×ρn Rn := (PSO × Rn)/SO(n)→M,

6Note that the map is not C-linear since the Hermitian inner product is skew-linear in the second variable!
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where we take the (left) SO(n) action on the product PSO × Rn by

a · (φ, v) := (φa−1, ρn(a) v),

and where ρn : SO(n) → GL(Rn) is the standard representation of SO(n) on Rn. In other
words, the quotient TM is the equivalence classes of pairs (φ, v) ∼ (φa−1, ρn(a)v), which in
terms of (3.12) is realized explicitly by evaluation: TxM 3 ξ = φ(v).

Generally speaking, given any linear representation ρ : SO(n) → GL(V ), there is an asso-
ciated vector bundle

E = PSO ×ρ V =
{

[(φ, v)] : (φ, v) ∼ (φa−1, ρ(a)v)
}
→M,

whose fibers are isomorphic to V . All of the standard geometric bundles are associated bundles
with respect to various representations:

T ∗M = PSO ×ρ∗n Rn, ΛkM = PSO ×Λkρ∗n
ΛkRn,⊗r TM = PSO ×⊗r ρn

⊗r Rn etc.
(3.13)

(Here ρ∗n = (ρ−1
n )† denotes the dual, or contragredient, representation.)

Definition 3.10. Let M be an oriented Riemannian manifold. The Clifford bundle C`(M)
is the associated bundle

C`(M) = PSO ×c`(ρn) C`(Rn)→M

where c`(ρn) : SO(n) → Aut
(
C`(Rn)

)
is the action induced by the standard action on Rn.

We denote by C`(M) the complexified Clifford bundle PSO×c`(ρn) C`(Rn). The fiber of C`(M)
(resp. C`(M)) at x ∈M is just C`x(M) = C`(TxM, gx) (resp. C`(TxM, gx)).

There is a natural inclusion TM ↪→ C`(M) as a vector subbundle. Alternatively, we may
regard T ∗M as a subbundle using the identification TM ∼= T ∗M afforded by the metric. We
will use this identification implicitly below, and often fail to distinguish between tangent and
cotangent vectors.

We say a vector bundle E → M is a Clifford module, or C`(M)-module, if there is a
multiplicative action

c` : C`(M)⊗ E → E, η ⊗ v 7→ c`(η)v,

c`(η1)(c`(η2)v) = c`(η1η2)v.
(3.14)

In particular, Ex is a representation of C`x(M) for all x ∈ M . We are mostly interested in
the case that E is a complex bundle with Hermitian inner product, with a complex action
C`(M)⊗ E → E, and we assume that the action by unit vectors is unitary:

〈c`(e)v, c`(e)w〉 = 〈v, w〉, |e|2 = 1.

In light of c`(e)2 = −1, this is equivalent to 〈c`(e)v, w〉 = −〈v, c`(e)w〉.
We say E is a graded Clifford module if E = E0 ⊕ E1 and the action (3.14) is graded:

C`j(M)⊗ Ek → Ej+k(mod 2).
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Example 3.11. The bundle ΛM =
⊕n

j=1 ΛjT ∗M is a Clifford module, with action given as

in (3.9). With respect to the grading ΛM = ΛevenM ⊕ΛoddM , it is a graded Clifford module.
Taking complexification ΛM ⊗ C leads to a C`(M) module.

Recall that a connection, or covariant derivative, on a vector bundle E is a first order
differential operator

∇ : C∞(M ;E)→ C∞(M ;T ∗M ⊗ E)

which satisfies the Liebnitz rule:

∇(fs) = df ⊗ s+ f∇s, s ∈ C∞(M ;E), f ∈ C∞(M).

Fixing a vector field V ∈ C∞(M ;TM) and taking the natural contraction between TM and
T ∗M gives the differential operator

∇V : C∞(M)→ C∞(M), ∇V (fs) = V (f) s+ f∇V s.

If E has a Hermitian (resp. real positive definite) inner product, then ∇ is a unitary (resp.
orthogonal) connection provided

d〈s, t〉 = 〈∇s, t〉+ 〈s,∇t〉 ⇐⇒ V 〈s, t〉 = 〈∇V s, t〉+ 〈s,∇V t〉.

Example 3.12. Recall that if M is equipped with a Riemannian metric, then TM admits a
unique orthogonal connection under the requirement that the torsion ∇XY − ∇YX − [X,Y ]
vanishes. The result is the Levi-Civita connection ∇ = ∇LC, which may be defined via the
Koszul formula

2〈∇XY,Z〉 = 〈[X,Y ], Z〉 − 〈[Y,Z], X〉+ 〈[Z,X], Y 〉
+X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉.

(3.15)

Apart from the signs, this formula is easy to remember. The signs are fixed by the orthogonality
condition (exchanging Y and Z in the formula and adding should result in 2X〈Y,Z〉, so the
fourth sign is +, the first and third signs are the same, and the fifth and sixth signs are
opposite) and the torsion free condition (exchanging X and Y in the formula and subtracting
should result in 2〈[X,Y ], Z〉, so the first sign is +, the second and third signs are opposite, and
the fourth and fifth signs are the same). We can encode the Levi-Civita connection in terms
of a local frame {e1, . . . , en} for TM in terms of the coefficients

Γkij = 〈∇eiej , ek〉, or Γkij s.t. ∇eiej =
∑
k

Γkijek,

which can be computed by the above. Particularly useful are the cases when {e1, . . . , en} are or-
thogonal, in which case the second row of (3.15) vanishes, or when {e1, . . . , en} = {∂x1 , . . . , ∂xn}
is a coordinate basis, in which case we call the Γkij Christoffel symbols and the first row of
(3.15) vanishes, giving the classical formula Γkij = 1

2(∂igjk + ∂jgik − ∂kgij).
In fact, we recall that the connection can be associated with an object (a principal bundle

connection) on the principal bundle PSO, which then induces a connection on any associated
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bundle. Thus the bundles (3.13) are all equipped with canonical orthogonal connections, which
we collectively refer to as the Levi-Civita connection.

In particular, the Clifford bundle itself inherits the Levi-Civita connection

∇ = ∇LC : C∞
(
M ; C`(M)

)
→ C∞

(
M ;T ∗M ⊗ C`(M)

)
.

Definition 3.13. Let E →M be a Hermitian Clifford module. A unitary connection ∇ on E
is a Clifford connection if it satisfies the following compatibility condition with respect to
the action of C`(M):

∇
(
c`(η)s

)
= c`(∇LCη)s+ c`(η)∇s. (3.16)

Given such a structure, we define a Dirac operator D ∈ Diff1(M ;E) by the composite

D : C∞(M ;E)
∇→ C∞(M ;T ∗M ⊗ E)

c`→ C∞(M ;E)

At a point x ∈M , D has the local expression

(Ds)(x) =

n∑
j=1

c`(ej)∇ejs(x), s ∈ C∞(M ;E), (3.17)

where {e1, . . . , en} is a frame for TM near TxM which is orthonormal at TxM (on the choice
of which D does not depend).

Proposition 3.14. A Dirac operator D ∈ Diff1(M ;E) is a formally self-adjoint elliptic oper-
ator, with principal symbol

σ(D)(x, ξ) = ic`(ξ) ∈ C∞
(
T ∗M ; End(E)

)
. (3.18)

In particular, D2 has symbol σ(D2) = |ξ|2 I, so D2 is a positive Laplace-type operator.

Proof. The principal symbol of any connection is easily computed to be

σ(∇)(x, ξ) = iξ ⊗ · ∈ C∞
(
T ∗M ; Hom(E, T ∗M ⊗ E)

)
,

and composing this with the Clifford action gives (3.18).

To see that D is self-adjoint, we first note that, since ∇ is a unitary connection on E,

〈∇V s, t〉 = V 〈s, t〉 − 〈s,∇V t〉 ∈ C∞(M), s, t ∈ C∞(M ;E), V ∈ C∞(M ;TM).

Integrating this overM , and recalling that
∫
M V (f) dVolg =:

∫
M f div(V ) dVolg where div(V ) ∈

C∞(M) is the divergence of V , we have the L2 adjoint formula

(∇V s, t)L2 = (s,−∇V t)L2 + (s, div(V )t)L2
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so in other words ∇∗V = −∇V + div(V ) for unitary connection. Then we may use the local
expression (3.18) to compute

〈Ds, t〉 =
∑
j

〈
c`(ej)∇ejs, t

〉
= −

∑
j

〈s,∇∗ej
(
c`(ej)t

)
〉

=
∑
j

〈
s,∇ej

(
c`(ej)t

)〉
− 〈s, div(ej)c`(ej)t〉

=
∑
j

〈
s, c`(ej)∇ej t

〉
+ 〈s, c`(∇LC

ej ej)t〉 − 〈s, div(ej)c`(ej)t〉.

= 〈s,Dt〉+
∑
j

〈s, c`(∇LC
ej ej)t〉 − 〈s, div(ej)c`(ej)t〉.

Observe that expression must be independent of the choice of orthonormal frame {e1, . . . , en},
and we can always arrange to satisfy ∇eiej = 0 at a given point x ∈ M . Since div(V ) =∑

j ej y∇ejV it follows that the second two terms above vanish at x when computed with such
a frame. But since x was arbitrary and the expression is independent of the choice of frame,
these additional terms must vanish identically.

Since T ∗M ⊂ C`1(M) is in the odd-graded part of C`(M), it follows that if E = E0 ⊕ E1

is a graded Clifford module, then the Dirac operator has the form

D =

(
0 D1

D0 0

)
: C∞(M ;E0 ⊕ E1)→ C∞(M ;E0 ⊕ E1),

D0 ∈ Diff1(M ;E0, E1), D1 = (D0)∗ ∈ Diff1(M ;E1, E0).

Example 3.15. To revisit our one (and only) example so far, taking the Levi-Civita con-
nection on the Clifford module ΛM with Clifford action (3.9) leads to a Dirac operator
D ∈ Diff1(M ; ΛM), which of course is our old friend, the Hodge de Rham operator

D = d+ d∗ : C∞(M ; ΛM)→ C∞(M ; ΛM).

With respect to the grading, D0 and D1 are both given by d+ d∗, but considered as operators
from even to odd degree forms and vice versa.

One way of obtaining new Dirac operators is the following. Suppose E is a Hermitian
Clifford module with Dirac operator D = c` ◦ ∇E ∈ Diff1(M ;E), and suppose F is any other
Hermitian bundle. First, note that

c`⊗ 1 : C`(M)⊗ E ⊗ F → E ⊗ F

gives E ⊗ F the structure of a Hermitian Clifford module. Then recall that if ∇F is any
connection on F , we define the tensor product connection on E ⊗ F by

∇E⊗F (e⊗ f) = (∇Ee)⊗ f + e⊗∇F f.

It is straightforward to verify that if ∇F is unitary, then ∇E⊗F is unitary with respect to the
inner product 〈e1 ⊗ f1, e2 ⊗ f2〉 = 〈e1, e2〉〈f1, f2〉 and satisfies the property (3.16) of being a
Clifford connection.
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Definition 3.16. Let E, D and F be as above. The operator

DF = c`⊗ 1 ◦ ∇E⊗F ∈ Diff1(M ;E ⊗ F )

is a twisted Dirac operator on E⊗F which we say is obtained by “twisting”D ∈ Diff1(M ;E)
by F .

Since the representation theory of C`n is so simple, this leads us to the natural question of
if and when arbitrary Dirac operators can be expressed as twistings of some fundamental Dirac
operator or operators. The answer to this question involves the notion of spin structures.

Consider for simplicity the case that M has dimension 2n. We recall that any representation
W of C`2n decomposes as a multiple of the fundamental irreducible representation S = S2n;
explicitly

W ∼= S⊗H, (3.19)

where H = HomC`2n(S,W ) has the trivial action. The isomorphism is given by s ⊗ h 7→
h(s). Because of this, it is tempting to suppose that every Clifford module E → M likewise
decomposes as a multiple of some fundamental one, say something like “C`(M)×C`2n S2n”.

There are several problems with this. For one, the latter object is not quite well-defined,
since C`2n is an algebra, not a group, and C`(M) is not in fact a principal bundle (though this
could be remedied by passing to the subgroup of units). More seriously, we recall that C`(M) is
fundamentally associated to the principal bundle PSO →M (in principal bundle language, the
structure group of C`(M) has been reduced to SO(2n)), so in order to form a bundle associated
to S2n with the right properties, we would need a nontrivial action of SO(2n) on S. In fact
there isn’t one, and the examination of this failure leads to a topological obstruction to defining
a fundamental irreducible C`(M) module.

3.2.3 Spin

Fix a real inner product space V . We begin by trying to find a group inside C`(V ) which acts
by special orthogonal transformations on V . For v, w ∈ V , the Clifford relation can be written

vw = −wv − 2〈v, w〉.

If v 6= 0 then v is a unit inside C`(V ), with v−1 = −v/ |v|2. Thus composing with v−1 on the
right gives the adjoint action

Adv(w) = vwv−1 = −w + 2
〈v, w〉
|v|2

v.

In fact, because of the signs it is better to consider the twisted adjoint action

Ãdv(w) = −vwv−1 = w − 2
〈v, w〉
|v|2

v, (3.20)

which we recognize as the reflection of w across the hyperplane v⊥ ⊂ V . This is an orthogonal
transformation of V , and does not depend on the magnitude of v, i.e., Ãdv(w) = Ãdav(w) for
all a 6= 0. So we may as well restrict attention to those v with |v| = 1.
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Definition 3.17. The Pin group7 is the group generated by the unit norm elements of V :

Pin(V ) = {v1 . . . vN : vi ∈ V, |vi| = 1} ⊂ C`(V ).

Extending Ãd multiplicatively defines a homomorphism Ãd : Pin(V ) → O(V ). Since the
product of an even number of reflections always preserves the orientation of V , we define the
Spin group by

Spin(V ) = Pin(V ) ∩ C`0(V ) = {v1 . . . v2N : vi ∈ V, |vi| = 1} ,

and then Ãd restricts to a homomorphism8 Ãd : Spin(V )→ SO(V ). Note that, since Spin(V ) ⊂
C`0(V ), the adjoint and twisted adjoint actions coincide: Ad = ÃdSpin(V )→ SO(V ).

Proposition 3.18. The twisted adjoint homomorphism is surjective, and defines the short
exact sequences

1→ Z2 → Pin(V )→ O(V )→ 1

1→ Z2 → Spin(V )→ SO(V )→ 1

of groups. In fact, Spin(V ) is the universal cover of SO(V ) for dim(V ) ≥ 3.

Proof. Recall that every element A ∈ O(V ) can be represented as a finite product of reflections,
with A ∈ SO(V ) if and only if the number of reflections is even. Indeed, considering A ∈ O(V )
as a unitary transformation of V ⊗C, we may diagonalize A by the spectral theorem, and since
A is real, the eigenvalues come in complex conjugate pairs. Passing back to the real subspaces
of the paired eigenspaces exhibits A as a block diagonal matrix

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak


where the Ai are orthogonal transformations of 1 and 2 dimensional subspaces, in which dimen-
sions the claim can be easily verified by hand. This proves surjectivity of Ãd : Pin(V )→ O(V ),

and clearly Spin(V ) = Ãd
−1(

SO(V )
)
.

To see that ker Ãd = {±1}, suppose Ãdη = 1. From (3.20), this is equivalent to

(−1)kηw = wη ∀w ∈ V, η ∈ Pin(V ) ∩ C`k(V ). (3.21)

In terms of the orthonormal basis {eI = ei1 · · · eil : I = {i1, . . . , il} , i1 < · · · < il} of C`(V ), we
may write

η =
∑
|I|=k

aIeI , |aI | = 1.

7The name is a joke that will make sense in a second.
8Get it now?
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Applying (3.21) with w = ej , and using

eIej =

{
(−1)|I|ejeI , j /∈ I,
(−1)|I|+1ejeI , j ∈ I

we obtain that aI = 0 if j ∈ I. Since j was arbitrary, we conclude η = ±1.

It follows that Pin(V ) and Spin(V ) are double covers of O(V ) and SO(V ), respectively. To
see that they are nontrivial double covers, it suffices to show that there is a path from 1 to −1.
This may be done explicitly, for example if ei and ej are orthonormal, then

(ei cos t/2 + ej sin t/2)(−ei cos t/2 + ej sin t/2) = cos t+ eiej sin t

= exp(teiej), 0 ≤ t ≤ π,
(3.22)

does the trick. (For the second neat equality, notice that (eiej)
2 = −1.) Since π1(SO(V )) = Z2

if dim(V ) ≥ 3, it follows that Spin(V ) is the universal cover of SO(V ).

For later reference the following observation will be useful. Recall that there is a natural
isomorphism of vector spaces Λ2V ∼= so(V ) under which v ∧ w is identified with the skew
adjoint transformation

(v ∧ w)z = 〈v, z〉w − 〈w, z〉v.

In particular, for V = Rn, ei ∧ ej is identified with the standard basis matrix Eij ∈ so(n)
having −1 at index (i, j), +1 at index (j, i) and 0 everywhere else.

Now, we have a copy of Λ2V sitting inside C`(V ) via (3.4) and the following result identifies
this as the Lie algebra of Spin(V ), but with a nontrivial multiplicative factor which is at once
potentially confusing and very important!

Proposition 3.19. The double covering Ad : Spin(V ) → SO(V ) generates a Lie algebra
isomorphism

ad : Λ2V = spin(V )
∼=→ so(V ),

under which

ad−1(v ∧ w) =
1

4
[v, w] ∈ Λ2V ⊂ C`(V ).

In particular, for V = Rn,

ad−1(ei ∧ ej) =
1

2
eiej , i < j, (3.23)

(and then 1
2eiej = 1

4(eiej − ejei) = 1
4 [ei, ej ]).

Remark. Another (slightly more intrinsic) way to understand the factor of 1
2 is to note that

it is necessary to realize a Lie algebra isomorphism so(n) ∼= Λ2Rn ⊂ C`(Rn). Indeed, we may
identify Eij with ei ∧ ej ∼= eiej , but in so(n) we have [Eij , Ejk] = Eik while in C`n we have
[eiej , ejek] = 2eiek.
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Proof. Fix an identification V ∼= Rn and consider the curve

γ(t) = exp(teiej) = cos t+ eiej sin t ∈ Spin(n)

(see (3.22)) with γ(0) = 1, γ′(0) = eiej . This shows that Λ2V ⊂ spin(V ), and since the
dimensions of these linear spaces are the same, we must have equality. To compute the image
of eiej under ad : spin(V )→ so(V ), consider Adγ(t)(v) for some v ∈ Rn. We have

adeiej v =
d

dt
|t=0 Adγ(t)(v) =

d

dt
|t=0γ(t)vγ−1(t)

= eiejv − veiej = eiejv + (eiv + 2〈v, ei〉)ej
= eiejv − eiejv + 2〈v, ei〉)ej − 2〈v, ej〉ei = 2(ei ∧ ej)v

which proves (3.23), and then writing 1
2eiej = 1

4 [ei, ej ] and extending bilinearly gives the
general result.

Remark. This suggests an alternative way to construct Spin(V ). Instead of looking initially for
an orthogonal group representation on V , we can look for a Lie algebra representation. One
can then show directly that [Λ2V,Λ2V ] ⊂ Λ2V ⊂ C`(V ), so Λ2V is a Lie subalgebra of C`(V )
with bracket the commutator. In addition, [Λ2V,Λ1V ] ⊂ Λ1V , so it acts on V = Λ1V ⊂ C`(V ),
and it is easy enough to show that the action is infinitesimally orthogonal. Then we can define
Spin(V ) = exp(Λ2V ) ⊂ C`(V ) by exponentiating inside the Clifford algebra. See [BGV92] for
details.

Consider the irreducible graded C`2n representation S2n = S+
2n ⊕ S−2n. Since Spin(2n) ⊂

C`02n, it follows that S+
2n and S−2n are representations of Spin(2n) := Spin(R2n), which are

inequivalent. In fact, since they are irreducible representations of C`02n and Spin(2n) contains
a basis for the latter space they must be irreducible representations for Spin(2n). Likewise
in the odd case, the two inequivalent (ungraded) representations S+

2n+1 and S−2n+1 lead to
inequivalent irreducible representations of Spin(2n+ 1). We conclude

Corollary 3.20. The half-spinor representations S+
n and S−n are irreducible representations of

Spin(n) which do not factor through representations of SO(n).

In order to obtain a vector bundle over M associated to S, it is therefore necessary to work
with a principal Spin(n) bundle rather than a principal SO(n) bundle.

3.2.4 Spin structures on a manifold

Definition 3.21. Let M be an oriented Riemannian manifold of dimension n. A spin struc-
ture on M is a principal Spin(n) bundle PSpin → M which lifts the frame bundle PSO, i.e.,
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there is a morphism PSpin → PSO such that

Spin(n) PSpin

SO(n) PSO

M

commutes, where the left vertical map is the double cover Spin(n) → SO(n). If M admits a
spin structure, then we say M is a spin manifold.

In general spin structures need not exist due to a cohomological obstruction, as per the
following result which we state without proof.

Proposition 3.22. A manifold M is spin if and only if the second Steifel-Whitney class
w2(M) ∈ H2(M ;Z2) vanishes. Moreover, if w2(M) = 0, then the spin structures on M are in
bijective correspondence with the set H1(M ;Z2).

Remark. For comparison, recall that M is orientable if and only if w1(M) = 0 ∈ H1(M ;Z2),
and then the possible orientations are in bijective correspondence with the set H0(M ;Z2).
Thus a spin structure can be thought of as a kind of “higher level” orientation.

While we have not covered the general theory of connections on principal bundles, it is a
fact that, since PSpin → PSO has discrete fibers (as a double cover), the Levi-Civita connection
lifts to a unique connection on PSpin, and hence on any bundle associated to it.

Definition 3.23. If M is a spin manifold of even dimension 2n, then the spinor bundle
S(M)→M is the graded vector bundle

S(M) = S+(M)⊕ S−(M) = PSpin ×ρ (S+
2n ⊕ S−2n)

where ρ = ρ+ ⊕ ρ− : Spin(n) → S2n = S+
2n ⊕ S−2n is the representation of Spin(2n) from

Corollary 3.20.

It carries a canonical Levi-Civita connection ∇LC : C∞
(
M ; S±(M)

)
→ C∞

(
M ;T ∗M ⊗

S±(M)
)
, which satisfies (3.16) with respect to the Clifford action c` : C`(M)⊗S(M)→ S(M),

and the spin Dirac operator

ð =

(
0 ð+

ð− 0

)
∈ Diff1

(
M ; S+(M)⊗ S−(M)

)
(3.24)

is then defined by ð = c` ◦ ∇LC, where c` : C`n → End(S2n) is the fundamental Clifford
representation.
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More generally, we now have a functorial way of constructing Clifford modules over M in
any dimension. Indeed, suppose (W = W 0 ⊕W 1, c`) is any graded C`n representation. The
components W j restrict to representations c`|Spin(n) of Spin(n), and we may form the graded
bundle

E = E0 ⊕ E1 = PSpin ×c`⊕c` (W 0 ⊕W 1)→M.

Note that the adjoint action Ad = Ãd of Spin(n) on Rn extends to the adjoint action of Spin(n)
on C`n = C`(Rn) itself, and we have a commutative diagram

PSpin × C`n ⊗W PSpin ×W

PSpin × C`n ⊗W PSpin ×W

c`

a

c`

a

where the vertical arrows are the action of a ∈ Spin(n):

a ·
(
p, η ⊗ v

)
=
(
pa−1,Ada η ⊗ c`(a)v

)
=
(
pa−1, aηa−1 ⊗ c`(a)v

)
,(

pa−1, c`(aηa−1)c`(a)v
)

=
(
pa−1, c`(a)c`(η)v

)
.

Thus the Clifford action descends to the quotient and gives E the structure of a graded Clifford
module:

c` : C`(M)⊗ E → E.

In addition, the lift of the Levi-Civita connection to PSpin determines a connection ∇ :
C∞(M ;E)→ C∞(M ;T ∗M ⊗ E) on E which is easily seen to be a Clifford connection.

Note that the Koszul formula (3.15) and Proposition 3.19 give a way to compute the action
of ∇ locally on any such Clifford module. Indeed, fixing a local orthonormal frame {e1, . . . , en}
for TM over an open set U ⊂M (which is a local section of PSO), we can write

∇eiej =
∑
k

Γkijek, Γkij = 1
2(〈[ei, ej ], ek〉 − 〈[ej , ek], ei〉+ 〈[ek, ei], ej〉) (3.25)

with the coefficients computed from (3.15). Then the covariant derivatives, as differential
operators on C∞(U ;Rn) (we have trivialized TM over U), take the form

∇ei = ei +
∑
j<k

Γkij(ej ∧ ek) ∈ Diff1(U ;Rn)

where the first term is the vector field ei considered as a first order differential operator, and
the second term is in C∞

(
U ; so(n)

)
where we write an element of so(n) as an element of Λ2Rn.

Choosing a lift of the local section from PSO to PSpin gives a local trivialization of E, and
then using Proposition 3.19 to lift ej ∧ ek ∈ so(n) to ad−1(ej ∧ ek) = 1

2ejek of spin(n) and
applying derivative of the representation c` : Spin(n)→W , we have the local equation

∇Eei = ei +
1

2

∑
j<k

Γkijc`(ej ek) ∈ C∞
(
U ; End(E)

)
. (3.26)
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There are two choices for the lift of the local section of PSO to the double cover PSpin, but they
amount to the same local formula. Let us pause to record what we have shown.

Proposition 3.24. There is a natural association between (graded) C`n representations and
(graded) Clifford modules on a spin manifold M . If E = PSpin ×ρ W is the Clifford module
associated to a representation (W,ρ), then E admits a canonical (graded) Dirac operator

D = c` ◦ ∇ ∈ Diff1(M ;E).

The Clifford connection on E, induced by the lift of the Levi-Civita connection on PSpin, acts
locally on sections by (3.26).

Since any C`2n representation W breaks up into a multiple of the fundamental irreducible
representation S2n via (3.19), we have the following result:

Proposition 3.25. Let M be a spin manifold of even dimension. Then any graded Clifford
module E0 ⊕ E1 →M has the form

E ∼= S(M)⊗H =
(
S+(M)⊕ S−(M)

)
⊗H, H = HomC`(M)

(
S(M), E

)
(3.27)

where H carries the trivial action of C`(M).
Moreover, every graded Dirac operator D ∈ Diff1(M ;E0⊕E1) is a twisting D = ðH of the

spin Dirac operator with respect to some connection on H.

Proof. The formula (3.27) is immediate: the map in the other direction is via s ⊗ h 7→ h(s)
and the fact that is an isomorphism follows from the analogous statement fiberwise. Suppose
then that D = c`E ◦ ∇E is a Dirac operator. Under the isomorphism (3.27), c`E ∼= c`S ⊗ 1,
and there is a unique connection ∇H on H such that ∇E ∼= ∇S ⊗ 1 + 1⊗∇H holds.

Remark. Note that, while a spin structure may not exist on M , it always exists locally. Thus,
for any Clifford module E →M , if we restrict to a sufficiently small set U ⊂M , then we can
always suppose E ∼= S(U)⊗H as above. This is useful in several contexts, for instance to show
that a Clifford module always admits a Clifford connection. Indeed, taking any connection on
H and the Levi-Civita connection on S(U) defines a Clifford connection on the product, and
then these local connections can be summed over M using a partition of unity.

It is also useful in the context of the index theorem. Indeed, we will mostly focus on proving
the index theorem for the spin Dirac operator and its twistings, but since the result is local
(in the sense that the index is computed as an integral over M of some index density), it is
actually valid for arbitrary Dirac operators over non-spin manifolds.

3.2.5 Curvature and Bochner formulas

Recall that a connection ∇ on an arbitrary vector bundle E →M has an associated curvature,
which may be defined in various ways. For instance, the covariant derivative ∇ : C∞(M ;E)→
C∞(M ;T ∗M ⊗ E) extends to a unique exterior covariant derivative

∇̃ : C∞(M ; Λk ⊗ E)→ C∞(M ; Λk+1 ⊗ E)
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defined inductively by the property

∇̃(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧ ∇̃s, ω ∈ C∞(M ; ΛkM), s ∈ C∞(M ;E).

Then the curvature of ∇ is defined to be the transformation

K = ∇̃ ◦ ∇ : C∞(M ;E)→ C∞(M ; Λ2 ⊗ E).

Alternatively, K can be defined in terms of ∇ directly via

K(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] : C∞(M ;E)→ C∞(M ;E), X, Y ∈ C∞(M ;TM).
(3.28)

From this latter formula (or otherwise) it can be shown that K ∈ Diff0(M ;E,Λ2 ⊗ E) is
actually an operator of order 0, i.e., it is represented by an End(E)-valued 2-form which acts
multiplicatively on C∞(M ; Λk ⊗ E).

Exercise 3.2. Use the symbolic theory of differential operators to show that K has order 0.
Hint: the commutator [∇X ,∇Y ] of two first order differential operators must have first order
since the second order principal symbol vanishes. Then convince yourself that the principal
symbols of [∇X ,∇Y ] and ∇[X,Y ] agree.

In particular, for E = TM , ∇ = ∇LC, the curvature is the Riemann curvature tensor

R ∈ C∞
(
M ; Λ2M ⊗ End(TM)

) ∼= C∞(M ; Λ2M ⊗ T ∗M ⊗ TM).

The fact that R is a 2-form which operates on TM makes it notationally rather confusing. We
will often write RX,Y (Z) instead of R(X,Y )(Z) to denote the contraction of R as a 2-form
with the bivector X ∧ Y , acting on a section Z of TM . In terms of a (usually coordinate)
frame {e1, . . . , en}, the standard convention for the indices of R is (somewhat unfortunately,
in my view)

Rlijk =
〈
Rej ,ek(ei), el

〉
, or Rlijk s.t. Rej ,ek(ei) =

∑
l

Rlijkel. (3.29)

We recall some of the fundamental symmetries of R which will be useful below.

Theorem 3.26. The Riemann curvature tensor enjoys the following symmetries:

〈RX,Y (Z),W 〉 = −〈RY,X(Z),W 〉 (3.30a)

〈RX,Y (Z),W 〉 = −〈RX,Y (W ), Z〉 (3.30b)

〈RX,Y (Z),W 〉+ 〈RY,Z(X),W 〉+ 〈RZ,X(Y ),W 〉 = 0 (3.30c)

〈RX,Y (Z),W 〉 = 〈RZ,W (X), Y 〉 (3.30d)
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Exercise 3.3. Prove Theorem 3.26, (or look it up). Equations (3.30a) and (3.30b) reflect
the fact that R is a 2-form valued in skew-adjoint endomorphisms of TM . (3.30c) follows
by inserting the torsion identity [X,Y ] = ∇XY − ∇YX into the Jacobi identity [X, [Y, Z]] +
[Y, [Z,X]] + [Z, [X,Y ]] = 0. Then (3.30d) follows from the previous ones.

Taking traces of R leads to simpler curvature tensors which capture partial information
about R. The Ricci curvature tensor is given by

Ric(X,Y ) = trR·,X(Y )· =
∑
j

〈
Rej ,X(Y ), ej

〉
. (3.31)

From (3.30d) it is a symmetric 2-cotensor. The scalar curvature is given by

κ = tr Ric(·, ·) =
∑
k

Ric(ek, ek) =
∑
j,k

〈
Rej ,ek(ek), ej

〉
=
∑
j,k

−
〈
Rej ,ek(ej), ek

〉
, (3.32)

and is a real-valued function on M .
Just as we lifted the action of ∇LC to bundles associated to PSpin in the paragraphs pre-

ceding Proposition 3.24, we may use the same approach to lift the action of the Riemann
curvature tensor. Indeed, choosing a local orthonormal frame {e1, . . . , en} for TM over an
open set U and using (3.29), we may express Rei,ej ∈ C∞

(
U ; so(TM)

)
as the family of skew

adjoint transformations

Rei,ej =
∑
k<l

Rlkij(ek ∧ el) =
∑
k<l

〈
Rei,ej (ek), el

〉
(ek ∧ el) ∈ C∞

(
U ; so(n)

)
.

Then in light of Proposition 3.19 this lifts to act on a Clifford module E = PSpin ×c`W by

REei,ej =
1

2

∑
k<l

Rlkijc`(ekel) =
1

2

∑
k<l

〈
Rei,ej (ek), el

〉
c`(ekel)

=
1

4

∑
k,l

〈
Rei,ej (ek), el

〉
c`(ekel) ∈ C∞

(
U ; End(E)

)
.

(3.33)

We know that that if D is a Dirac operator associated to a Clifford connection ∇ on E, then
D2 is a positive Laplace-type operator on E. There is another canonical way of constructing
a Laplace-type operator on E out of ∇. Indeed, recall that the principal symbol of ∇ is given
by

σ(∇)(x, ξ) : Ex 3 e 7→ iξ ⊗ e ∈ T ∗xM ⊗ Ex.

The adjoint of this operation is

σ(∇)(x, ξ)∗ : T ∗xM ⊗ Ex 3 η ⊗ e 7→ −i〈ξ, η〉e ∈ Ex,

and then σ(∇∗∇)(x, ξ) : e 7→ |ξ|2 e, so the connection Laplacian, or Bochner Laplacian

∇∗∇ ∈ Diff2(M ;E)
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is also a Laplace-type operator, which is evidently positive. The difference of these two Lapla-
cians is the content of the following result, variously referred to as the general Bochner
formula9 or the Weitzenbock formula.

Theorem 3.27. Let ∇ be a Clifford connection on a Hermitian Clifford module E →M with
associated Dirac operator D ∈ Diff1(M ;E). Then

D2 = ∇∗∇+R, R ∈ C∞
(
M ; End(E)

)
, (3.34)

where the curvature term, R, is given locally in terms of an orthonormal frame {e1, . . . , en}
of TM via

R(s) = 1
2

∑
j,k

c`(ejek)K(ej , ek)(s) =
∑
j<k

c`(ejek)K(ej , ek)(s), s ∈ C∞(M ;E), (3.35)

where K is the curvature tensor of the connection ∇.

Proof. First, let us determine a local formula for ∇∗∇. In terms of an orthonormal frame
{e1, . . . , en}, we have

〈∇∗∇s, t〉 = 〈∇s,∇t〉 =
∑
j

〈
∇ejs,∇ej t

〉
=
∑
j

−
〈
∇ej∇ejs, t

〉
+
〈
div(ej)∇ejs, t

〉
.

We may always choose the frame so that div(ej) = 0 for all j at a given point x, so it follows
that

∇∗∇s = −
∑
j

∇ej∇ejs

since the right hand side may be expressed as − tr ∇̃·∇·s, which is independent of the choice
of basis.

Now, taking an orthonormal frame in which ∇ejek = 0 and [ej , ek] = 0 for all j, k at x ∈M ,
we compute

D2s =
∑
j,k

c`(ej)∇ejc`(ek)∇eks

=
∑
j,k

c`(ej)c`(ek)∇ej∇eks

=
∑
j

−∇ej∇ejs+
∑
j<k

c`(ejek)(∇ej∇ek −∇ek∇ej )s

=
∑
j

−∇ej∇ejs+
∑
j<k

c`(ejek)(∇ej∇ek −∇ek∇ej −∇[ej ,ek])s

= ∇∗∇s+Rs,

which proves the claim.

9The idea of comparing the Laplacian to the connection Laplacian seems to have originated with Bochner.
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There are a few important special cases. First, for the Hodge de Rham operator D =
d + d∗ ∈ Diff1(M ; ΛM), we recall that ∆ = D2 actually preserves form degree, so we have
D2 ∈ Diff1(M ; Λk) for each fixed k. Clearly ∇∗∇ also preserves form degree, and so too
therefore must the curvature term R.

Proposition 3.28. On 1-forms, the Bochner formula has the form

∆ = ∇∗∇+ Ric ∈ Diff1(M ; Λ1) (3.36)

where the Ricci curvature transformation, Ric, is the (dual of the) transformation associ-
ated to the bilinear form defined by the Ricci curvature:

Ric(φ) := Ric(φ], ·) =
∑
j

〈
Rej ,φ](·), ej

〉
= −

∑
j

〈
Rej ,φ](ej), ·

〉
∈ C∞(M ;T ∗M) ∼= C∞(M ;TM).

(Here φ] ∈ C∞(M ;TM) is obtained from φ ∈ C∞(M ;T ∗M) by the metric isomorphism g :
T ∗M ∼= TM .)

Proof. We may regard φ ∈ C∞(M ; Λ1) as a section of C`(M), on which the Clifford action is
just given by left multiplication. Then the curvature term is given by

R(φ) = 1
2

∑
i,j

eiejRei,ej (φ) = 1
2

∑
i,j,k

eiejek
〈
Rei,ej (φ), ek

〉
.

Notice that, when i, j, and k are distinct, eiejek ∈ Λ3M ⊂ C`(M), while as remarked above,
we know that R must preserve form degree, so that R(φ) ∈ Λ1M ⊂ C`(M). Thus the terms in
the sum with i, j and k all distinct must vanish identically10. By antisymmetry i and j must
be distinct, so we have

R(φ) = 1
2

∑
i,j

eiejei
〈
Rei,ej (φ), ei

〉
+ 1

2

∑
i,j

eiejej
〈
Rei,ej (φ), ej

〉
= 1

2

∑
i,j

+ej
〈
Rei,ej (φ), ei

〉
+ 1

2

∑
i,j

−ei
〈
Rei,ej (φ), ej

〉
=
∑
i,j

−ei
〈
Rei,ej (φ), ej

〉
=
∑
i,j

−ei
〈
Rφ,ej (ei), ej

〉
=
∑
i,j

−ei
〈
Rej ,φ(ej), ei

〉
=
∑
j

−Rej ,φ(ej) = Ric(φ).

As a Corollary, we deduce a topological obstruction to a manifold having positive Ricci
curvature, a result originally due to Bochner.

10Alternatively, you can swap φ and ek in these terms and use the Bianchi identity (3.30c) to show that these
terms vanish. Or, you can regard this argument as a proof of (3.30c)!
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Corollary 3.29 (Bochner). Let M be a compact Riemannian manifold with Ric ≥ 0 (pointwise
as a bilinear form on TM). If Ric > 0 at some point x ∈M , then H1(M ;R) = 0.

Proof. Suppose that H1(M ;R) = 0. By Hodge theory, this means there is a nontrivial 1-form
φ ∈ C∞(M ; Λ1) which is harmonic: ∆φ = 0. Pairing ∆φ with φ, using (3.36) and integrating,
we obtain

0 = (∆φ, φ) = ‖∇φ‖2 +

∫
M

Ric(φ, φ).

In particular,
∫
M Ric(φ, φ) ≤ 0. Since Ric ≥ 0 by hypothesis, it must be that Ric = 0

identically, but this contradicts the hypothesis that Ric > 0 at some point.

The second case that we want to consider is the spin Dirac operator, in which case the
result is known as the Lichnerowicz formula.

Proposition 3.30 (Lichnerowicz). On spinors, the spin Laplacian and connection Laplacian
are related by

ð2 = ∇∗∇+ 1
4κ,

where κ denotes the scalar curvature.

Proof. For fixed ei, ej , the local curvature endomorphism Rei,ej acts on S(M) by (3.33). For
notational simplicity, we write c`(ei) simply as left multiplication by ei. Then

RS =
1

2

∑
i,j

eiejRei,ej =
1

8

∑
i,j,k,l

eiej
〈
Rei,ejek, el

〉
ekel =

1

8

∑
i,j,k,l

〈
Rei,ejek, el

〉
eiejekel. (3.37)

We may split off from the sum the terms where i, j, and k are all distinct, and then use∑
l

∑
i,j,k

distinct

〈
Rei,ejek, el

〉
eiejekel

=
∑
l

1

3

( ∑
i,j,k

distinct

〈
Rei,ejek, el

〉
eiejek +

〈
Rej ,ekei, el

〉
ejekei + 〈Rek,eiej , el〉ekeiej

)
el = 0,

which follows from (3.30c). Thus the only terms to consider are where i, j, and k are not all
distinct. By antisymmetry of R we must have i 6= j, so either i = k or j = k. Thus (3.37)
becomes

RS =
1

8

∑
i,j,l

(〈
Rei,ej (ei), el

〉
eiejeiel +

〈
Rei,ej (ej), el

〉
eiejejel

)
=

1

8

∑
i,j,l

(〈
Rei,ej (ei), el

〉
ejel −

〈
Rei,ej (ej), el

〉
eiel
)

=
1

4

∑
i,j,l

〈
Rei,ej (ei), el

〉
ejel.
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By (3.30d),
〈
Rei,ej (ei), el

〉
is symmetric with respect to interchanging j and l, while ejel is

antisymmetric if j 6= l, so we must have j = l and then by (3.32),

RS = −1

4

∑
i,j

〈
Rei,ej (ei), ej

〉
=

1

4
κ.

Recall that for a tensor product connection ∇E⊗F = ∇E ⊗ 1 + 1 ⊗ ∇F , the curvature is
given by

KE⊗F = KE ⊗ 1 + 1⊗KF .

In the case of a twisting D = ðF of the spin Dirac operator by a bundle (F,∇F ) this leads to
the following.

Corollary 3.31. The Bochner formula for a twisted Dirac operator ðF ∈ Diff1(M ; S(M)⊗F )
is given by

ð2
F = ∇∗∇+ 1

4κ+K, K ∈ C∞
(
M ; End(S(M)⊗ F )

)
,

K(s⊗ f) = 1
2

∑
i,j

(
c`(eiej)s

)
⊗
(
KF (ei, ej)f

)
.

3.2.6 Supertrace

Before we leave the subject of Clifford algebras and in preparation for the heat supertrace
computation in the next section, let us say a bit more about general Z2 graded formalism, and
the supertrace in particular. As noted above, a Z2 graded vector space is simply one of the
form E = E0⊕E1. An algebra A is Z2 graded if it is graded as a vector space, so A = A0⊕A1,
and Ai · Aj ⊂ Ai+j(mod 2).

In particular, the algebra End(E) = End(E0 ⊕ E1) of endomorphisms on a graded vector
space is a graded algebra:

End(E) = End0(E)⊕ End1(E),

End0(E) = Hom(E0, E0)⊕Hom(E1, E1) End1(E) = Hom(E0, E1)⊕Hom(E1, E0).

In other words, the even elements of End(E) are the block diagonal endomorphisms and the odd
elements are the block antidiagonal endomorphisms, and a general endomorphism A ∈ End(E)
can then be decomposed uniquely as(

A00 A10

A01 A00

)
= A = A0 ⊕A1 A0 =

(
A00 0
0 A11

)
, A1 =

(
0 A10

A01 0

)
.

The action of End(E) on E is graded in the sense that Endj(E) · Ek ⊂ Ej+k(mod 2), and in
general, a graded representation of an algebra A = A0⊕A1 on E = E0⊕E1 is a homomorphism
A → End(E) such that Aj → Endj(E). We have discussed these above in the case that
A = C`(V ).
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In a graded algebra, a natural replacement for the commutator is the supercommutator,
defined on elements of pure degree by

[Aj , Bk]s = AjBk − (−1)jkBkAj , i, j ∈ Z2, (3.38)

and then extended by linearity. This is the ordinary commutator except on odd elements,
where it becomes the anticommutator. The general rule of thumb in the graded formalism is
that, anytime you move “something” past “something else” (i.e., in working with products,
derivations and so on), you insert the sign −1 exponentiated by the product of their degrees.

In finite dimensions, we can compute the trace of an endomorphism as usual, but in order
to retain the analogue of the key property tr([A,B]) = 0, the trace should be replaced by the
supertrace

strA := trA00 − trA11, A ∈ End(E0 ⊕ E1).

Exercise 3.4. Show that, in finite dimensions, str is the unique linear functional str : End(E0⊕
E1)→ C with the property that it vanishes on supercommutators: str([A,B]s) = 0.

The relevance for us at the moment is the following situation. Recall that S2n = S+
2n ⊕ S−2n

is the unique irreducible representation of C`2n, which may be graded in one of two ways. By
convention we take S0 = S+ and S1 = S−, where S± are distinguished as the eigenspaces of
the Clifford volume element (3.10):

S±2n 3 s ⇐⇒ c`(ω2n)s = ±1, ω2n = ine1 · · · e2n.

Recall that we deduced the existence of S2n via the isomorphism C`2n ∼= Mat2n(C), under
which S2n

∼= C2n . In particular, we have the natural identification

End(S+
2n ⊕ S−2n) ∼= C`2n (3.39)

of graded algebras. This identification is fundamental to Getzler’s rescaling argument in the
proof of the index theorem. In particular, (3.39) permits us to define a natural supertrace on
C`2n. Recall that C`2n is filtered as an algebra by

C`2n = C`(2n) ⊃ C`(2n−1) ⊃ · · · ⊃ C`(0) = C.

Proposition 3.32. Under the identification (3.39), the supertrace vanishes on C`(j)2n for all
j < 2n. In particular, str is only nontrivial on the subspace C〈e1 · · · e2n〉 ⊂ C`2n, where it is
uniquely determined by

str(ω2n) = 2n, ω2n = ine1 · · · e2n.

Proof. Write a ∈ C` and denote by A ∈ End(S) the image of a under the identification (3.39),
so str(a) = trA00 − trA11. If a ∈ C`1 then A ∈ End1(S) is antidiagonal and str a = 0, so it
suffices to consider a ∈ C`0.



104 Linear Analysis on Manifolds

Let a = ei1 · · · ei2l be a basis element of nonmaximal degree, so l < n. Then there exists
some ej such that j /∈ {i1, . . . , i2l}. Since ej ∈ C`1, the corresponding endomorphism Ej is an
isomorphism

Ej : S±
∼=→ S∓

with E−1
j = −Ej in light of e2

j = −1. Using the Clifford relations, we compute

a = ei1 · · · ei2n = −e2
jei1 · · · ei2n = −ejei1 · · · ei2nej = ej(ei1 · · · ei2n)e−1

j ,

and then it follows that we may write

A =

(
A00 0

0 EjA00E
−1
j

)
, =⇒ str a = trA00 − tr(EjA00E

−1
j ) = 0.

On a = ω2n = ine1 · · · e2n, it follows from the definition of S±2n and the fact that dim(S±2n) =
2n−1 that

A =

(
I 0
0 −I

)
=⇒ strω2n = 2n.

3.3 Heat kernels and Getzler rescaling

With the conventions for Dirac operators in hand, let us now restate the index problem. Let

D =

(
0 D1

D0 0

)
∈ Diff1(M ;E)

be a graded Dirac operator acting on sections of a graded Clifford module E = E0 ⊕ E1.
Thus D0 ∈ Diff1(M ;E0, E1) is a Dirac operator with adjoint D∗0 = D1 ∈ Diff1(M ;E1, E0),
and we wish to compute ind(D0) = dim NullD0−dim NullD1. By the McKean-Singer formula
observed in §3.1, this is given by

ind(D0) = Tr e−tD1D0 − Tr e−tD0D1 = Str e−tD
2 ∀t ∈ R+,

where the supertrace of a trace-class operator K ∈ B1

(
L2(M ;E)

)
is defined with respect to

the grading L2(M ;E) = L2(M ;E0)⊕ L2(M ;E1) by

StrK = Str

(
K00 K10

K01 K11

)
= TrK00 − TrK11.

This can be written in terms of the ordinary trace by composing with an involution:

StrK = TrRK, R =

(
1 0
0 −1

)
,
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and then it follows from Lidskii’s Theorem 2.20 that if K ∈ C∞
(
M2; END(E)

)
is a smoothing

operator11,

StrK =

∫
M

trRK(x, x) dVolg =

∫
M

strK(x, x) dVolg,

where str : C∞
(
M ; End(E)

)
→ C∞(M) is the fiberwise supertrace with respect to the grading

E = E0 ⊕ E1.
We constructed the heat kernel H(t, x, y) = e−tD

2
for an arbitrary Laplace-type operator in

Chapter 2, and in principle we could compute the relevant asymptotic as t→ 0 of Str e−tD
2

=∫
Mdiag

strH(t, x, x) dVolg from the asymptotic expansion of H at the boundary face hf ⊂ M2
H

in the heat space. Unfortunately, as we noted in §3.1, constancy of Str e−tD
2

means that the
first nonvanishing term have order O(t0), which involves the little supertrace of the nth term in
the asymptotic expansion of H at hf, where n = dim(M). It is all but impossible in practice to
explicitly compute a term so far down in the expansion12, so we must revisit our construction
in some way.

The clever idea due to Getzler [BGV92], reformulated by Melrose [Mel93], and simplified
by the author in the current presentation, is to rescale the bundle END(E) on M2

H in such a
way that the leading term in the heat kernel, considered as a section of the rescaled bundle,
carries the desired information, i.e., has nontrivial supertrace.

3.3.1 Rescaling a bundle at a hypersurface

Here we consider an abstract setup in order to fix ideas. Let X be an oriented manifold, let
F → X be a vector bundle, and denote by F = C∞(X;F ) the space of smooth sections13 of
F . This is a module over the algebra C∞(X) of smooth functions. The important point here
is that we can recover F from F in the following manner. Let p ∈ X, and denote by

Ip = {u : u(p) = 0} ⊂ C∞(X)

the set of smooth functions on X which vanish at p; this is an ideal (in fact a maximal ideal)
in the algebra C∞(X).

Proposition 3.33. There is a natural isomorphism

Fp ∼= F/IpF

exhibiting the fiber space of F at p as the quotient of sections of F by those vanishing at p.
Moreover, the C∞ structure and local triviality of F =

⊔
p∈X Fp are induced by F , so F → X

is recovered as a smooth vector bundle from the algebra F .
11Or more generally, a trace-class operator whose Schwartz kernel admits a well-defined restriction to the

diagonal.
12The first heat kernel proofs of the index theorem did this by determining the universal properties such a

term must have, and then explicitly computing the index of Dirac operators on sufficiently many example spaces
to determine it completely.

13Technically speaking, F is better considered as a sheaf on X, where F(U) = C∞(U ;F ) for an open set
U ⊂ X, though since all sheaves we consider here are flabby, it will suffice to consider global sections. If you
don’t know what any of this means, don’t worry!
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Remark. This is really a somewhat dumbed-down instance of the Serre-Swan Theorem, which
states that there are equivalences of categories between the category of vector bundles on X, the
category of finitely generated projective modules (such as F) over C∞(X) , and the category
of locally free sheaves of OX modules, where OX denotes the sheaf of smooth functions.

Proof. Let f ∈ F be a section of F , and let x = (x1, . . . , xn) denote local coordinates centered
at p. Then f has the two term Taylor expansion f(x) = f(0) +

∑n
i=1 xifi(x), and since each

xi = 0 at p, the image of f in the quotient F/IpF is just f(0); in particular we have a linear
map F/IpF → Fp taking f to f(p). Clearly two sections f and g have the same image in the
quotient if and only if f(p) = g(p), so the map is well-defined and injective, and it is surjective
since for any v ∈ Fp we can construct a local section having f(p) = v and then extend this to
a global section using a smooth cutoff function.

To recover F as a vector bundle from F , note that the above isomorphism allows us to
interpret f ∈ F as a map f : X → F :=

⊔
p∈X Fp. The local triviality of F comes from the

fact that, for a sufficiently small open set U ⊂ X, there exist {f1, . . . , fk} ∈ F (a local frame
for F |U , extended by 0 on X using smooth cutoff functions) such that any f ∈ F with support
in U can be written uniquely as f =

∑k
i=1 akfk. The topology and smooth structure on F are

fixed by requiring C∞(X;F ) = F .

Now let Y ⊂ X be an oriented hypersurface. By restricting consideration to one side of
Y or the other, we may as well assume Y is a boundary hypersurface of X, a manifold with
boundary (or possibly corners). Suppose that

F (0) ⊂ F (1) ⊂ · · · ⊂ F (m) = F (3.40)

is a filtration of F , which is defined in a neighborhood14 of Y .

Fix a normal function x to Y , meaning that x vanishes nondegenerately at Y and nowhere
else, and consider the subalgebra of sections

G =
{
f ∈ C∞(X;F ) : f ∈

∑m
j=0 x

jC∞(X;F (j))
}
⊂ F .

Thus f ∈ G if its Taylor expansion normal to Y has the local form

f(x, y) = f0(y) + xf1(y) + · · ·+ xm−1fm−1(y) + xmfm(x, y),

where the coefficients fj(y) are sections of F (j) over Y .

Remark. It is not too hard to show (though we do not do so here) that G is independent of the
choice of x. For this it is necessary that (3.40) is a filtration as opposed to a grading, and that
the filtration is not defined solely over Y but comes with some adequate notion of extension
in the normal direction.

14A weaker condition suffices, namely that the filtration is defined up to some finite order jet of Y in X,
though we shall not need to use this; see [Mel93]. In the case m = 1, it is actually sufficient that the filtration
(which is really just a subbundle in this case) be defined just at Y itself.
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The claim is that there is a well-defined vector bundle RF → X such that G = C∞(X; RF )
is the space of all smooth sections of RF , with no restrictions over Y . Indeed, note that G is
again a C∞(X) module, and we may define

RF =
⊔
p∈X

RFp → X, RFp = G/IpG,

Proposition 3.34. The set RF defined above has a natural structure of a vector bundle over
X of rank equal to that of F , and there is a natural map RF → F of vector bundles, which
restricts to an isomorphism over X \ Y .

Proof. If p ∈ X \Y then the inclusion G ⊂ F descends to an isomorphism G/IpG ∼= F/IpF , so
it suffices to see what happens for p ∈ Y . Denote by rl the rank of each subbundle F (l), and
choose a local frame {f1, . . . , fk} for F near p with the property that for each l,

{f1, . . . , frl} is a local frame for F (l) near p. (3.41)

Then f ∈ G ⊂ F if and only if it has the local form

f =

m∑
l=0

rl∑
j=rl−1+1

xlajfj aj ∈ C∞(X), (3.42)

(set r−1 = 0) and an element is in IpG if and only if it has the above form where in addition
aj(p) = 0 for all j. Thus the image of f in G/IpG is the k-dimensional vector

[f ] ∼=
(
a1(p)f1(p), . . . , ak(p)fk(p)

)
.

Said another way, {f ′1, . . . , f ′k} determine a formal local frame for RF where f ′j = xlfj , rl−1 <

j ≤ rl; note that xlfj are nonvanishing at Y , considered as sections of RF . As above, the
topology and smooth structure on RF → X are determined by the requirement that G =
C∞(X; RF ). You can check that this is independent of the choice of frame among those that
have the property (3.41).

The inclusion G ⊂ F induces the natural map RF → F , which just amounts to taking
local bases {f ′1, . . . , f ′k} for RF as above and remembering that f ′j = xlfj , regarded now as the

product of the function xl ∈ C∞(X) and the section fj of F . Thus the map is an isomorphism
over X \ Y , but not over Y . Indeed, locally at p ∈ Y ,

RFp 3 (f ′1, . . . , f
′
k) 7→ (f1, . . . , fr0 , 0, . . . , 0) ∈ Fp,

so the map is neither injective nor surjective.

Definition 3.35. The vector bundle RF → X is the rescaling of F at Y associated to the
filtration (3.40).
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The bundle RF is “rescaled” from F in the sense that some sections of F which originally
vanished over Y (such as the xlfj) are identified with sections of RF which do not vanish over
Y . The point is a somewhat subtle one, but operationally speaking the process is simple: we
take local expressions (3.42) and either read them as sections of F , with coefficients xlaj times
the formal basis vectors fj , or as sections of RF with coefficients aj times the formal basis
vectors xlfj .

Recall that anytime we have a filtered algebra/vector space/bundle, there is an associated
graded algebra/vector space/bundle, defined by

GrF =

m⊕
j=0

F (j)/F (j−1)

(set F−1 = {0}) and there is a natural map F → GrF , which is an isomorphism of linear
spaces, (usually not of algebras) taking f ∈ F (j) to [f ] in the summand F (j)/F (j−1), with j
taken as small as possible.

Example 3.36. We have already seen an example of this in (3.4), where ΛV is the associated
graded algebra of C`(V ).

Another rather sophisticated example we have seen is the filtered algebra Diff(M) of
differential operators on M , whose associated graded algebra is the commutative algebra
C∞

(
M ; Sym(TM)

)
=
⊕

k∈N P
k(T ∗M) of polynomial symbols on T ∗M , or equivalently sec-

tions of the symmetric tensor bundle of TM .

Proposition 3.37. With respect to a choice of normal function x, the restriction RF |Y of the
rescaled vector bundle over the hypersurface Y is isomorphic to the associated graded bundle:

RF |Y
∼=→ GrF |Y

f =
m∑
l=0

xlfl 7→ ([f0], [f1], . . . , [fm]).
(3.43)

Remark. The isomorphism only depends on dx ∈ C∞(Y ;N∗Y ), in that if x′ = a x is another
normal function with dx = dx ∈ C∞(Y ;N∗Y ), i.e., a|Y ≡ 1, then the two maps (3.43) will
coincide.

Proof. The restriction of RF to Y can be identified with the vector bundle whose sections over
Y are given by the quotient algebra G/xG. The image of f =

∑m
l=0 x

lfl, fl ∈ C∞(X;F (l)) in
this quotient is easily seen to be the right hand side of (3.43).

3.3.2 Getzler rescaling

We turn now to the case of interest. Suppose M is a spin manifold of dimension 2n, and
consider the Dirac operator ð ∈ Diff1

(
M ; S

)
on spinors. We write S instead of S(M) in this

section for notational clarity. Recall that we have a canonical isomorphism

End(S) ∼= C`(M)
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under which End(S) is identified with the Clifford bundle, which carries the filtration

C`(0)(M) ⊂ C`(1)(M) ⊂ · · · ⊂ C`(2n)(M) = C`(M). (3.44)

It is this filtration that defines the Getzler rescaling.
From Chapter 2, the heat kernel of ð2 ∈ Diff2(M ; S) is a distributional section of END(S)

on the heat space M2
H . Let us recall what this means exactly. Over M × M , the bundle

END(S) is the bundle with fiber Hom(Sy,Sx) at (x, y) ∈M2. Over the diagonal, Mdiag ⊂M2,
we have a canonical identification

END(S)|Mdiag
∼= End(S) ∼= C`(M), (3.45)

but if x 6= y, Hom(Sy, Sx) is not an algebra, and it is does not make sense in general to identify
it with C`(M).

The bundle END(S) is pulled back to M2
H by the composite map

πM2 : M2
H

βH→ R+ ×M2 →M2

and we often drop the π∗M2 from the notation, simply writing END(S)→M2
H .

The identification (3.45) carries over to the preimage of the diagonal,

π−1
M2(Mdiag) = R+ ×Mdiag ∪ hf ⊂M2

H ,

which is the union of the lifted diagonal (defined as the closure in M2
H of the preimage under

βH of (0,∞)×Mdiag ⊂ R+ ×M2) and the heat face.
Getzler’s rescaling will be defined as the rescaling of END(S) at the heat face hf ⊂ M2

H

associated to the filtration (3.44). The only problem is, if you’ll recall, we require the filtration
to be defined in a neighborhood of hf, whereas at the moment it is only defined at hf. We need
a way to extend the filtration off of hf.

One way to do this is by parallel transport. If we pick a vector field ν defined near hf
which is normal to hf, then there is a sufficiently small neighborhood hf× [0, ε)x over which the
bundle may be identified with the pullback from hf ×{0}. Indeed, the condition ∇νv = 0 may
be viewed as a family of ODE along the integral curves of ν near hf, which admit solutions for
uniform ε by compactness of hf. The collar neighborhood is defined by hf × [0, ε)x, where x
satisfies ν(x) = 1, and the parallel transport condition can then be stated as the property that

∇ν = ∂x (3.46)

on this neighborhood. In light of (3.46), notice that the sections with which we define the
rescaled bundle, namely

v = v0 + xv1 + · · ·+ x2nv2n +O(x2n+1), vj ∈ C∞(hf;C`(j))

can be equivalently defined in terms of the condition

∇jνv|hf ∈ C∞(hf;C`(j)), 0 ≤ j ≤ 2n.
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The rescaled bundle we obtain will depend on our choice of normal vector field, so we would
like to make a good choice.

Recall that in Chapter 2, we were already filtering sections by order with respect to the
function τ = t1/2 on M2

H . Indeed, we defined Φk as the space τ−kρ∞tf C
∞(M2

H ; END(S)
)
, so it

would be nice to choose ν so that

ν(τ) = 1. (3.47)

The one caveat here is that τ is not actually a boundary defining function for hf; indeed,
τ = ρtfρhf is the product of boundary defining functions for hf and tf, so any vector field
satisfying ν(τ) = 1 will be singular at the corner hf ∩ tf, where it will have the schematic form
sρ−1

tf ∂ρhf + (1 − s)ρ−1
hf ∂ρtf for some s ∈ [0, 1]. However this is OK for our purposes, since we

will always be applying it to the spaces ρ∞tf τ
−kC∞ = ρ∞tf ρ

−k
hf C

∞, on which the singular factor

of ρtf may be absorbed, and on which it has the desired behavior of mapping ρ∞tf ρ
−k
hf C

∞ into

ρ∞tf ρ
−k−1
hf C∞ = ρ∞tf τ

−k−1C∞, i.e., of lowering the degree of growth/vanishing at hf by one.

Another condition we may impose, which will fix ν|hf , is how it pushes forward under
the blow-down map β : M2

H → R+ ×M2. Under β, a point in hf is mapped to a point in
{0} ×Mdiag ⊂ (R+)τ ×M2, and any normal vector at that point will be sent to a normal
vector at the image. There are various natural choices for a complementary subbundle to
T ({0} ×Mdiag); for instance, we can choose to identify N({0} ×Mdiag) with the subbundle15

N({0} ×Mdiag) ∼=
{(
η, ζ, 0

)}
⊂ T (R+ ×M2)|{0}×Mdiag

Recalling that we also have a canonical identification hf ∼= TM , it makes sense to impose the
condition that

d(βH)(x,ζ)(ν) = (1, ζ, 0) ∈ T(0,x,x)(R+ ×M2), ∀(x, ζ) ∈ h̊f ∼= TM (3.48)

Here we are using ∂τ to trivialize T (R+)τ , so the coefficient 1 denotes the vector 1∂τ . This
formula is important, so take a moment to digest its meaning. We are saying that, at the
point (x, ζ) in TM , which we have identified with h̊f, ν should come from the normal vector
(1, ζ, 0) ∈ T (R+)τ ⊕ TM ⊕ TM to the time zero diagonal.

Proposition 3.38. There exists a vector field ν, defined in a collar neighborhood of h̊f ⊂M2
H

which satisfies (3.47) and (3.48), and extends to a singular vector field on a neighborhood of
hf.

Proof. It is useful to employ a slightly different local coordinate convention for the blow-up
M2
H → R+×M2 than before; namely, if (τ, x, y) are local coordinates near the diagonal on the

latter space, with x = π∗Lz and y = π∗Rz given by pulling back the same local coordinates on
M from the right and left, define coordinates on M2

H by

(τ, ζ, y) =
(
τ, (x− y)/τ, y

)
. (3.49)

15Various other natural choices exist, for instance the subbundle
{

(η, 1
2
ζ,− 1

2
ζ)
}

or the subbundle {(η, 0,−ζ)}.
Either of these choices lead to the same formulas below.
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Then the blow-down map is given by

β : (τ, ζ, y) 7→ (τ, τζ + y, y)

and the tangent vector ∂τ upstairs at a point (0, ζ, y) is mapped to

d(βH)(0,ζ,y)(∂τ ) = ∂τ + ζ · ∂x, (3.50)

which has the required form.

To see that this is independent of the choice of local coordinates, observe that (3.50),
multiplied by τ , is the vector field

τ∂τ + x · ∂x,

whose restriction to the diagonal R+×Mdiag is independent of the choice of coordinates. Thus
we can take ν to be the lift of this, divided by τ , and by reversing the computations above,
this has the form ∂τ in local coordinates upstairs defined by the convention (3.49).

Definition 3.39. The Getzler rescaling of END(S) at hf ⊂ M2
H is the vector bundle

GEND(S)→M2
H defined by the property

C∞
(
M2
H ; GEND(S)

)
=
{
A : ∇jνA|hf ∈ C∞

(
hf;C`(j)(M)

)
, 0 ≤ j ≤ 2n

}
⊂ C∞

(
M2
H ; END(S)

)
.

Here we employ the isomorphisms END(S)|hf ∼= End(S) ∼= C`(M), the connection ∇ is the
Levi-Civita connection on END(S) = π∗L,MS� π∗R,MS∗, and the (singular) normal vector field

ν satisfies (3.47) and (3.48). In particular, a section of GEND(S), viewed as a section of the
unrescaled bundle END(S), has the form

B = B0 + τB1 + · · ·+ τ2nB2n +O(τ2n+1), Bj ∈ C∞
(
hf;C`(j)(M)

)
(3.51)

at h̊f ⊂M2
H . From Proposition 3.37, there is a canonical isomorphism

GEND(S)|hf ∼= GrC`(M) ∼= ΛM, (3.52)

under which the image of a section (3.51) is identified with

B|hf = ([B0], [B1], . . . , [B2n]) ∈ C∞(hf; Λ0M ⊕ · · · ⊕ Λ2nM).

We define the rescaled kernel spaces by

GΦk = τ−kρ∞tf C
∞(M2

H ; GEND(S)
)
, k ∈ Z.

Evidently GΦk ⊂ GΦl for k ≤ l, and from the bundle map GEND(S) → END(S), there is an
inclusion

GΦk ⊂ Φk ∀ k, (3.53)
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of the rescaled kernel spaces into the unrescaled kernel spaces. If A ∈ GΦk, then its image in
Φk has the form

A = τ−kA0 + τ1−kA1 + · · ·+ τ2n−kA2n +O(τ2n+1) ∈ Φk,

Aj = 1
j!∇

j
ν(τkA)|hf ∈ S

(
TM ;C`(j)(M)

)
,

(3.54)

where we use the identification ρ∞tf C
∞(hf) ∼= S(TM).

By analogy with (2.15), we define the rescaled heat model operator of A ∈ GΦk by

GN(A) = GNk(A) = (τkA)|hf ∈ S(TM ; ΛM), A ∈ GΦk.

Here we use the isomorphism (3.52). In terms of (3.54) the normal operator takes the form

GN(A) = ([A0], [A1], . . . , [A2n]) ∈ S
(
TM ; Λ0M ⊕ · · · ⊕ Λ2nM

)
.

For A ∈ GΦk, it follows from (3.53) that we may compare the rescaled model operator with
the unrescaled one, and from the expression (3.54) it is clear that

Nk(A) =
[
GNk(A)

]
0

= [A0] ∈ S(TM ; Λ0M),

where
[
·
]
l

: ΛM → ΛlM denotes the projection onto the l-form component of a total form,
for 0 ≤ l ≤ 2n.

From Proposition 2.6 and Corollary 2.7, we obtain the following result.

Proposition 3.40. Let A ∈ GΦk. Then A defines an operator

A : C∞(M ; S)→ t(2n−k)/2C∞((R+)1/2 ×M ; S) ⊂ t(2n−k)/2C0(R+ ×M ; S).

If k = 2n, then the time 0 restriction of A is the operator

A|t=0 : C∞(M ; S)→ C∞(M ; S), A|t=0u =
(∫

fib

[
GN(A)

]
0

)
u.

The next result, which is a direct analogue of Proposition 2.22 from our earlier heat kernel
construction, shows that Getzler’s rescaling fulfills the promise of encoding the short-time limit
of the supertrace of a heat kernel A in terms of the leading order term, GN(A), in the expansion
at hf.

Proposition 3.41. If A ∈ GΦ2n, then StrA has a complete short time asymptotic expan-
sion as t↘ 0 of the form

StrA ∼
∞∑
j=0

aj t
j/2,

with a0 =
∫
M str

[
GN(A)(0, x)

]
2n

dVolg.
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Proof. We may view A as a section of Φk of the form (3.54), and then from the discussion in
§3.3 it follows that, a priori

Str a ∼ t−n
∞∑
j=0

ãjt
j/2, ãj =

∫
M

strAj(x, 0) dVolg.

However, since Aj ∈ S
(
TM ;C`(j)(M)

)
, for j ≤ 2n and str ≡ 0 on C`(j)(M) by Proposi-

tion 3.32, it follows that ãj = 0 for j < 2n. Reindexing and noting that strA2n = str[A2n] =
str
[
GN(A)

]
2n

proves the claim.

The cost of working with the rescaled bundle is that we change the model PDE to be solved
over h̊f ∼= TM in the iterative construction. Recall that in §2.3.4 we computed the action on
N(A) of the lift of vector fields of the form τV , where V was a vector field on M , pulled back
to R+ ×M2 from the leftmost factor of M . We do the analogous computation here for the
covariant derivative ∇τV , making use of the defining condition ∇jνu|hf ∈ C∞

(
hf;C`(j)(M)

)
for

sections of GEND(S).

Lemma 3.42. Let A ∈ GΦk and let V be the pullback of a vector field on M to R+×M2 from
the left factor of M . Then

GN(∇τVA) =
(
σ(V )ζ + 1

4R
∧
ζ,V

)
GN(A),

where σ(V )ζ ∈ Diff1
fib(TM) is the symbol of V , considered as a fiberwise (scalar) differential

operator on TM , and

R∧ζ,V =
∑
i<j

〈Rζ,V (ei), ej〉(ei ∧ ej) : ΛkM → Λk+2M.

More explicitly, if GN(A) = (A0, A1, . . . , A2n) ∈ S(TM ; ΛM), then

GN(∇τVA) = (B0, . . . , B2n),

Bj(x, ζ) = σ(V )ζAj(x, ζ) + 1
4Rζ,VAj−2(x, ζ), 0 ≤ j ≤ 2n.

(3.55)

Remark. The reason the computation is more complicated than in §2.3.4 is that we can no
longer simply disregard all terms of order O(τ) at hf, since terms of various orders in τ are
baked into the definition of sections of GEND(S).

Proof. We are using the given (Levi-Civita) connection on END(S), which is the lift of a
connection from M2 to M2

H . This has several important implications. First of all, under the
identification End(S) ∼= C`(M), the restriction of the connection to hf preserves the filtration⋃
j C`(j)(M); in particular this holds for any covariant derivatives taken along vector fields

tangent to hf. Next, since the curvature of the connection is a(n endomorphism-valued) 2-
form, it commutes with pullback in the sense that

RX,Y := (π∗M2R)X,Y = π∗M2(R(πM2 )∗X,(πM2 )∗Y ).
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In particular, while the lift of V itself is singular at hf (hence we lift τV instead), the curvature
term Rν,V is bounded at hf and Rν,τV = τRν,V vanishes.

We fix an element A ∈ GΦk and regard it for the purposes of the computation as a section
of the unrescaled bundle END(S), of the form (3.54). After the computation we will reinterpret
the result as a section of the rescaled bundle GEND(S). Commuting an overall factor of τk

through the computation will have no affect, so it suffices to consider the case that A ∈ GΦ0.
Thus, regarded as a section of END(S),

A = A0 + τA1 + · · ·+ τ2nA2n +O(τ2n+1), Aj = 1
j!∇

j
νA|hf ∈ S

(
TM ;C`(j)(M)

)
,

GN(A) =
⊕
j

[
Aj |hf

]
j

=
⊕
j

[
1
j!∇

j
νA|hf

]
j
∈ S(TM ; Λ0M ⊕ · · · ⊕ Λ2nM).

Here and below, we use the notation
[
·
]
j

to denote the associated graded projection from

C`(M) ∼= ΛM onto ΛjM ∼= C`(j)(M)/C`(j−1)(M). We wish to compute GN(∇τVA), which
will involve commuting ∇τV with ∇jν . For j = 0, the computation is easy, and the 0-form
component of GN(∇τVA) is simply[

GN(∇τVA)
]
0

=
[
∇τVA|hf

]
0

= ∇τV |hfA0,

since ∇τV preserves the filtration.

For j = 1, we have

[GN(∇τVA)]1 =
[
∇ν∇τVA|hf

]
1
, (3.56)

and we make use of the curvature identity ∇ν∇τV = ∇τV∇ν+Rν,τV +∇[ν,τV ]. As noted above,
Rν,τV = τRν,V , so this term will vanish when restricted to hf. For the last term, we claim that
[ν, τV ] is a vector field tangent to hf. This may be verified in local coordinates (3.49). Indeed,
if V has the local form V =

∑
j aj(x)∂xj , then τV lifts to

∑
j aj(y + τζ)∂ζj and [ν, τV ] is a

sum of various derivatives of the aj times the ∂ζj . In particular ∇[ν,τV ] preserves the filtration
degree of C`(M). Thus (3.56) becomes[

GN(∇τVA)
]
1

=
[
∇τV∇νA|hf + τRν,VA|hf +∇[ν,τV ]A|hf

]
1

=
[
∇τV |hfA1

]
1

+
[
∇[ν,τV ]|hfA0

]
1

=
[
∇τV |hfA1

]
1
.

Here we have used the fact that ∇[ν,τV ]|hfA0 is a section of C`(0)(M), hence vanishes when we

take the quotient in Λ1M ∼= C`(1)/C`(0).

Subsequent normal derivatives generate increasingly many terms, but we can simplify the
computation by distinguishing between relevant terms, which may contribute later on, from
irrelevant terms, which will never contribute anything. At each step we have an expansion
at hf in terms of the form τkC`(l), with the expansion at the next step determined by taking
∇ν , which lowers degree in τ . To compute the contribution to the normal operator at the jth
step, we apply the operations ·|hf and

[
·]j for some j; the first operation kills all terms of order
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greater than 0 in τ , and the second operation kills all remaining terms of order less than j in
C`(·). Thus in the first step we have

∇ν∇τVA = ∇τV∇νA︸ ︷︷ ︸
O(τ0C`(1))

+ τRν,VA︸ ︷︷ ︸
O(τ1C`(2))

+∇[ν,τV ]A︸ ︷︷ ︸
O(τ0C`(0))

.

Only the first term contributes to
[
GN(∇τVA)

]
1
, but the second term is still relevant, since

in the second step ∇ν will map this into τ0C`(2), which will contribute to
[
GN(∇τVA)

]
2
. In

contrast, the third term is irrelevant since even after j steps, we will have applied ∇jν , resulting
in terms of the form τ0C`(j), which will vanish on taking

[
·
]
j+1

. In general, terms of the form

τ jC`(l) will be relevant at step k if and only if l − j ≥ k.
This is the basis for an induction, where we may suppose

∇kν∇τVA = ∇τV∇kνA+ k τRν,V∇k−1
ν A+ k(k−1)

2 Rν,V∇k−2
ν A+ irrel.

Then recalling that Ak = 1
k!∇

k
νA|hf , we have[

GN(∇τVA)
]
k

=
[

1
k!∇

k
ν∇τVA|hf

]
k

=
[
∇τV |hfAk + 1

2Rν,VAk−2

]
k
. (3.57)

Here we are using k(k−1)
2

1
k! = 1

2
1

(k−2)! . To complete the induction we compute

∇k+1
ν ∇τVA = ∇ν

(
∇τV∇kνA+ kτRν,V∇k−1

ν A+ k(k−1)
2 Rν,V∇k−2

ν A
)

+ irrel.

= ∇τV∇k+1
ν A︸ ︷︷ ︸

O(τ0C`(k+1))

+ τRν,V∇kνA︸ ︷︷ ︸
O(τ1C`(k+2))

+∇[ν,τV ]∇kνA︸ ︷︷ ︸
O(τ0C`(k))

+ kRν,V∇k−1
ν A︸ ︷︷ ︸

O(τ0C`(k+1))

+ τk(∇νRν,V )∇k−1
ν A︸ ︷︷ ︸

O(τ1C`(k+1))

+ kτRν,V∇kνA︸ ︷︷ ︸
O(τ1C`(k+2))

+ k(k−1)
2 (∇νRν,V )∇k−2

ν A︸ ︷︷ ︸
O(τ0C`(k))

+ k(k−1)
2 Rν,V∇k−1

ν A︸ ︷︷ ︸
O(τ0C`(k+1))

+irrel.

= ∇τV∇k+1
ν A+ (k + 1)τRν,V∇kνA+ k(k+1)

2 Rν,V∇k−1
ν A+ irrel.

We have used the identity∇ν(τu) = u+τ∇νu (which follows from ν(τ) = 1) and have discarded
all terms of order O(τ jC`(l)) with l − j < k + 1 as irrelevant.

It remains to relate (3.57) with the claimed formula (3.55). Working in a local coordinate
frame {e1, . . . , e2n} = {∂x1 , . . . , ∂x2n} downstairs (which we may assume is orthonormal at a
given point), we express the action of ∇τV on C`(M) ∼= ΛM as (c.f. (3.26))

∇τV = τ
∑

i ai(x)
(
∂xi + 1

2

∑
j<k Γkijc`(ejek)

)
,

∼=
∑

i ai(x)(τ∂xi + 1
2

∑
j<k τΓkij(ej ∧ ek)

This lifts near hf ⊂M2
H to

∇τV =
∑
i

ai(x)∂ζi +O(τ) = σ(V )ζ +O(τ),
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hence ∇τV |hf = σ(V )ζ .
For the curvature term, we again use the identification GrC`(M) ∼= ΛM to write

1

2
Rν,V =

1

4

∑
j<k

〈Rν,V (ej), ek〉(ej ∧ ek) : ΛjM → Λj+2M.

In addition, we recall that (dβ)(x,ζ)(ν) = (1, ζ, 0) = ∂τ+ζ·∂x. Then sinceRν,V = R(πM2 )∗ν,(πM2 )∗V

as the connection is pulled back from M2 to M2
H via πM2 ◦ β : M2

H → M2—in particular,
(πM2)∗ν = (ζ, 0)—we conclude

1

2
Rν,V (x, ζ) =

1

4

∑
k<l

〈R(x)ζ,V (ek), el〉(ek ∧ el) : ΛjM → Λj+2M.

Now, R is naturally a 2-form with values in endomorphisms of TM (or an endomorphism of
TM with coefficients in 2-forms), and in the above expression we are using the endomorphism
part to act as a 2-form, which is a bit unnatural. By the symmetry properties of the curvature
tensor, this can be remedied. For a local orthonormal frame, define

Rij = 〈R(ei), ej〉 =
∑
k<l

〈Rek,el(ei), ej〉(ek ∧ el) ∈ C
∞(M ; Λ2).

The Rij = R(x)ij are the components of a local family of skew-adjoint matrices of 2-forms, and
setting V = ei above, we can write

1

4
Rζ,ei = −1

4

∑
j<k

〈
Rej ,ek(ei), ζ

〉
(ej ∧ ek) = −1

4

∑
j

Rijζj ∈ C∞(TM ; Λ2). (3.58)

Proposition 3.43. Let A ∈ GΦk. Then

GN(tð2A) = Hζ
GN(A),

where Hζ is the fiberwise operator

Hζ = −(
∑

i ∂ζi −
1
4

∑
j Rijζj)

2. (3.59)

More generally, let ðF be the spin Dirac operator twisted by a bundle F →M with connection
∇F and curvature KF . Then

GN
(
tð2
F )A

)
=
(
Hζ +KF

)
GN(A),

where KF =
∑

i<jK
F (ei, ej)(ei ∧ ej) : Λ∗M ⊗ F → Λ∗+2M ⊗ F .

Proof. We need only use the twisted Lichnerowicz formula and

tð2
F = τ2ð2

F = −
∑
i

∇τei∇τei +
τ2

4
κ+ τ2K, τ2K =

∑
i<j

KF (ei, ej)c`(τei τej).
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Lifted to hf ⊂M2
H , the term τ2/4κ vanishes, and applying Lemma 3.42 and (3.58) to the first

term gives Hζ , so it remains to determine how the last term acts on the rescaled bundle. If

A = A0 + τA1 + · · ·+ τ2nA2n +O(τ2n+1),

then clearly c`(τei) = τc`(ei) maps τ jAj to τ j+1ei · Aj . Under the identification of GEND(S)
with ΛM , this is precisely the operation ei ∧ · : ΛjM → Λj+1.

The computation of the action of t∂t = 1
2τ∂τ on rescaled normal operators is the same as

the unrescaled case, namely

GN(t∂tA) = −1
2(ζ · ∂ζ + 2n− k)GN(A), A ∈ GΦk.

Thus the full action of the heat operator t(∂t + ð2
F ) on A ∈ GΦk is given by

GN
(
t(∂t + ð2

F )A
)

=
(
− 1

2(ζ · ∂ζ + 2n− k) +Hζ +KF
)

GN(A).

However, rather than solve the model equation on TM explicitly as we did in §2, we will
instead take a slightly more classical approach and study the heat equation (∂t +Hζ)u = 0 for
operators of the form (3.59). The trick here is to note that if we freeze the coefficients R(x)ij
at a point x ∈M , then we can study the heat operator

∂t −
∑

i

(
∂ζi − 1

4

∑
j Rijζj

)2
on Rn with Euclidean coordinates ζ. Once we have determined a heat kernel for this operator,
we can then lift it to the heat space (Rn)2

H , and its restriction to any fiber of hf ⊂ (Rn)2
H will

give a solution to the model equation on the fiber of hf ⊂M2
H over x.

3.3.3 Mehler’s formula

The starting point is the heat equation for the quantum harmonic oscillator on R:

(∂t − ∂2
x + x2)u(t, x, y) = 0,

u(0, x, y) = δ(x− y).

This admits an explicit solution, known as Mehler’s formula:

u(t, x, y) =
(
2π sinh(2t)

)−1/2
exp

(
− 1

2 coth(2t)(x2 + y2) + cosech(2t)(xy)
)
, (3.60)

Exercise 3.5. Derive (3.60) starting from the ansatz u(t, x, y) = exp
(
at/2(x2+y2)+btxy+ct

)
,

which leads to explicitly solvable ODEs for at, bt and ct. This ansatz is justified by the fact that
the operator is quadratic in x (both in its differential and potential terms), the fact that the
heat kernel should be symmetric in x and y, and the desire for u to be a family of Gaussians.
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We may make this appear a bit more like the heat kernel for the classical Laplacian, and
combining this with the change of variables t 7→ at, x 7→ a1/2x, y 7→ a1/2y gives the heat kernel

ua(t, x, y) =
1

(4πt)1/2

( 2at

sinh 2at

)1/2
exp

(
− 1

4t

2at

sinh 2at

(
cosh 2at(x2 + y2)− 2xy

))
exp(−tf).

which is the fundamental solution to

(∂t − ∂2
x + a2x2 + f)ua = 0, f ∈ R.

It is convenient to set y = 0 and just work with pa(t, x) = ua(t, x, 0), which we shall do from
now on.

Now suppose Aij is an n × n antisymmetric matrix with coefficients in a nilpotent, com-
mutative algebra A. In practice we are interested in the case that A = ΛevenRn. Since A is
nilpotent, we may apply arbitrary power series to Aij , the result of which is always another
matrix with coefficients in A. Let K ∈ End(W ) be an arbitrary endomorphism of some finite
dimensional vector space W . We consider the heat operator

L := ∂t −
(∑n

i=1 ∂xi −
∑n

j=1Aijxj

)2
+K ∈ Diff2(R+ × Rn;A⊗W ). (3.61)

Proposition 3.44. The A⊗ End(W )-valued function

P (t, x) =
1

(4πt)n/2
det
( 2tA

sinh 2tA

)1/2
exp

(
− 1

4t

〈
2tA coth 2tAx, x

〉)
⊗ exp(−tK)

is a solution to (3.61) with P (0, x) = δ(x)1⊗ I.

Proof. Note that LP is analytic in the coefficients Aij ; since an analytic function on the algebra
A is determined by its values on R ⊂ A it suffices to verify the claim when Aij are real. By
making an orthogonal transformation in Rn, we can assume A is a direct sum of 2× 2 blocks,

thus it suffices to prove the result in the case that n = 2 and A =

(
0 a
−a 0

)
, which we assume

from now on. The contribution of K is also clear, so we shall assume K = 0 below to simplify
the notation.

Note that z/ sinh z and z coth z are even functions of z, which is to say they are given by
power series in z2. Since A2 = −a2I, it follows that these even functions take the same value
on A as on iaI. Thus

2tA coth(2tA) = 2ita coth(2ita)I = 2ita cot(2ta)I,

det
( 2tA

sinh 2tA

)1/2
= det

( 2ita

sinh 2ita
I
)1/2

= det
( 2ta

sin 2ta
I
)1/2

=
2ta

sin 2ta
,

and therefore P reduces to

P (t, x) = (4πt)−1 2ta

sin 2ta
exp

(
− 2ita cot(2ta)(x2

1 + x2
2)/4t

)
.
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On the other hand, expanding L out, we have

L = L′ + V, L′ = ∂t − (∂2
x1 + ∂2

x2)− a2(x2
1 + x2

2), V = a(x1∂x2 − x2∂x1).

Ignoring the last term for a moment and using Mehler’s kernel as above with a replaced by ia,
we see that a heat kernel for L′ is given by

pia(t, x1)pia(t, x2) = (4πt)−1/2
( 2ita

sinh 2ita

)1/2
exp(−2ita coth(2ita)x2

1/4t)

× (4πt)−1/2
( 2ita

sinh 2ita

)1/2
exp(−2ita coth(2ita)x2

2/4t)

= (4πt)−1
( 2ta

sin 2ta

)
exp

(
− 2ita cot(2ta)(x2

1 + x2
2)/4t

)
which is precisely P (t, x). To complete the proof, note that V = a(x1∂x2 − x2∂x1) is an
infinitesimal rotation; in particular V ‖x‖ = 0, so it follows that LP = 0.

3.4 The index theorem

We are interested in the generalized Mehler formula above in the case that Aij = 1
4Rij is a

two-form, with A = ΛevenRn, and K is a two-form with coefficients in End(F ). Lifting P (t, x)
to the Euclidean heat space (Rn)2

H and applying the Getzler rescaling amounts to replacing
Rij by t−1Rij , replacing K by t−1K, and replacing x/t1/2 by ζ. Removing an overall factor of
t−n/2, we obtain the function

(4π)−n/2 det
( R/2

sinhR/2

)1/2
exp

(
− 1

4

〈
R/2 coth(R/2)ζ, ζ

〉)
exp(−K). (3.62)

Theorem 3.45. Let M be an even dimensional spin manifold and ð2
F the spin Dirac operator

twisted by a bundle F →M . Then the heat kernel e−tð
2
F is an element of GΦ2n with

GN(e−tð
2
F )(x, ζ)

= (4π)−n det
( R(x)/2

sinhR(x)/2

)1/2
exp

(
− 1

4

〈
R(x)/2 coth(R(x)/2)ζ, ζ

〉)
exp

(
−KF (x)

)
. (3.63)

In particular, ind(ðF ) is given by the local index formula

ind(ðF ) = Str e−tð
2
F |t=0 = (2πi)−n

∫
M

[
det
( R/2

sinhR/2

)1/2
strF exp(−KF )

]
2n
. (3.64)

Remark. The formula (3.64) is usually attributed to Gilkey and Patodi, who originally proved
it using slightly different methods.



120 Linear Analysis on Manifolds

Proof. The solution (3.62) can be put together fiber by fiber on hf →M to define the solution
(3.63) to the model operator −1

2ζ · ∂ζ + Hζ + KF ∈ Diff2
fib

(
TM ; ΛM ⊗ End(F )

)
. We can

choose H1 ∈ GΦ2n with GN(H1) equal to (3.63) and then t(∂t + ð2
F )H1 =: R1 ∈ GΦ2n−1. This

same fundamental solution can be used to solve away GN(R1) over TM , so we can proceed
iteratively as we did in §2.3.5, obtaining H = H1 +H2 + · · · such that t(∂t + ð2

F )H ∈ GΦ−∞.
This final error can be removed by convolution as in §2.3.7. As a result, we obtain the true
fundamental solution e−tð

2
F ∈ GΦ2n, whose normal operator agrees with that of H1, i.e., is

given by (3.63).
The equation (3.64) follows from Propositions 3.41 and 3.32; we are using the fact that the

2n-form component of GN(e−tð
2
F ) can be written in terms of the volume element e1 · · · e2n, and

from Proposition 3.32, str(e1 · · · e2n) = (−2i)n.

The index formula (3.64) gives a prescribed index density, i.e., a top degree form whose
total integral over M is the index of the operator. We will show in the next section that (3.64)
has an interpretation in cohomology (which is usually what we refer to by “the Atiyah-Singer
index formula”), but this analytical result is strictly stronger since it prescribes a de Rham
representative for the class. One application of this is the following.

Suppose M̃ → M is a k-fold cover. Since it is a local diffeomorphism, there is a canonical
lift of ðF to a differential operator ð̃F on M̃ . The heat kernel construction is completely local
for t→ 0, so it follows that the index density for ð̃F is the obvious lift of the index density for
ðF from M , and it then follows that

ind(ð̃F ) = k ind(ðF ),

i.e., that the index is multiplicative with respect to finite covers. This fact does not follow
from the cohomological formulation of the index theorem.

3.4.1 Non-spin manifolds

Before going into the cohomological formulation, let us address the requirement that M be
spin. As we noted before, admitting a spin structure is a global property of a manifold; there is
no obstruction locally. Since the index formula in Theorem 3.45 is completely local, it cannot
detect whether or not M is spin, so it should hold as well for general Dirac operators on non-
spin manifolds. Indeed, one way to see this is to choose spin structures locally, decompose a
Dirac operator with respect to these choices, and then check that the index density does not
depend on the local choices.

More directly, we can make the following observation. Suppose E → M is a Clifford
module. If M is not spin, then we cannot generally write E = S⊗ F for some F . However, it
is always true that

End(E) ∼= C`(M)⊗ EndC`(E), (3.65)

where the second factor denotes endomorphisms of E which commute with the Clifford action.
In the case that E = S⊗F , then EndC`(E) = End(F ) and C`(M) = End(S). Given a Clifford
connection ∇E on E, we can write its curvature tensor as

KE = RS +KE/S ∈ C∞
(
M ; Λ2 ⊗ (C`(M)⊗ EndC`(E))

)
,
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where RS is the Riemannian curvature acting on C`(M) and KE/S := KE −RS.

Exercise 3.6. Show that KE/S is a section of Λ2 ⊗ EndC`(E) by showing that it commutes
with any clifford multiplication c`(v), where v is a section of TM .

Definition 3.46. The term KE/S ∈ C∞
(
M ; Λ2⊗EndC`(E)

)
is called the twisting curvature

of ∇E . In the case that E = S⊗F , ∇E = ∇⊗ 1 + 1⊗∇F , then KE/S is the curvature of ∇F .
Let w be a section of EndC `(E). We define the relative supertrace of s by

strE/S(w) := 2n/2 strE(ω2nw),

where ω2n = ine1 · · · e2n ∈ C`(M) is the Clifford volume element. In the case that E = S⊗ F ,
w = s⊗ f , then strE(w) = strC`(s) strF (f) (since str(ω2n) = 2n).

Since the construction of the heat kernel only involves the endomorphism bundle END(E),
and the decomposition (3.65) is canonical, the proof of Theorem 3.45 goes through to prove
the following generalization.

Theorem 3.47 (Local index theorem). Let D ∈ Diff1(M ;E) be a Dirac operator associated
to a Clifford module E →M with Clifford connection ∇E on any Riemannian manifold M of
dimension 2n. Assume E = E0 ⊕ E1 is graded, so

D =

(
0 D1

D0 0

)
with D0 ∈ Diff1(M ;E0, E1) and D1 = D∗0. Then

ind(D0) = Str e−tD
2 |t=0 = (2πi)−n

∫
M

[
det
( R/2

sinhR/2

)1/2
strE/S exp(−KE/S)

]
2n
.

3.4.2 A bit of Chern-Weil theory

Chern-Weil theory is essentially the “de Rham version” of characteristic classes. We briefly
recall here how it goes. Let E → M be a vector bundle (possibly with extra structure, such
as a unitary or orthogonal structure with respect to an inner product) and ∇ a connection
on E. Throughout this section we will also denote the exterior covariant derivative by ∇ :
C∞(M ; Λk⊗E)→ C∞(M ; Λk+1⊗E), which we recall is the unique extension of∇ to differential
forms such that ∇(ω ⊗ s) = dω ⊗ s+ (−1)|ω|ω ∧∇s.

Denote the curvature of ∇ by K ∈ C∞
(
M ; Λ2⊗End(E)

)
; in terms of the exterior covariant

derivative, recall that K = ∇2, which leads to an obvious proof of Bianchi’s identity

[∇,K] = 0.

Now let f(z) ∈ C[[z]] be a polynomial. The differential form f(K) ∈ C∞
(
M ; ΛM⊗End(E)

)
is well-defined (only finitely many terms are nonvanishing since ΛlM = {0} for sufficiently large
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l), where the product is taken both as differential forms and as composition in End(E). By the
noncommutativity of the latter, K2 6= 0 in general. Taking the trace then gives a well-defined
total differential form:

tr f(K) ∈ C∞(M ; ΛM).

Remark. If G is the structure group of E (say SO(k) or U(k), for example), then K is a section
of Λ2 ⊗ g(E), and we may more generally consider p(K) where p ∈ C[g∗]G is any invariant
polynomial (or power series). However it suffices for our purposes to restrict to those invariant
polynomials/power series which are given by the trace of an ordinary polynomial/power series.

Proposition 3.48.

(i) The total form tr f(K) is closed, i.e., d tr f(K) = 0.

(ii) If ∇t, t ∈ [0, 1] is a one parameter family of connections, with curvature Kt, then
∂t tr f(K) is exact.

(iii) In particular, the cohomology class [tr f(K)] ∈ H∗(M ;C) is independent of the choice of
connection.

Proof. If A ∈ C∞
(
M ; Λk End(E)

)
is any End(E)-valued k-form, then a general formula says

that d trA = tr∇(A) = tr[∇̃, A]s where we use the supercommutator (3.38) with respect to
the Z2 grading (ΛevenM ⊕ΛoddM)⊗End(E) This can be verified locally, after noting that the
right hand side is independent of the connection used (since tr[∇−∇, A]s = tr[∇−∇′, A] = 0
as ∇−∇′ ∈ C∞(M ; Λ1 ⊗End(E) and tr vanishes on commutators); in particular you can use
a trivial connection locally. Then (i) follows from d trK l = tr[∇,K l]s = tr[∇, ∇̃2l] = 0.

Suppose∇t is a one-parameter family of connections; in particular ∇̇t := ∂t∇t ∈ C∞
(
M ; Λ1⊗

End(E)
)

is an endomorphism-valued 1-form. From Kt = (∇t)2 we have K̇t = [∇̃t, ∇̇t]s, and

∂t tr f(Kt) = tr f ′(Kt)K̇t = tr f ′(Kt)[∇t, ∇̇t]s = tr[∇t, f ′(Kt)∇̇t]s = d tr(f ′(Kt)∇̇t),

where we have used the fact that [∇t, f ′(Kt)]s = 0.

In particular, if ∇0 and ∇1 are two connections on E, then ∇t := t∇1 + (1 − t)∇0 is a
one-parameter family, and

tr f(K1)− tr f(K0) =

∫ 1

0
∂t tr f(Kt) dt = d

∫ 1

0
tr(f ′(Kt)∇̇t) dt,

so [tr f(K1)] = [tr f(K0)] ∈ H∗(M ;C), proving (iii).

Definition 3.49. The (total) cohomology class f(E) := [tr f(K)] ∈ H∗(M ;C) is called the
characteristic class of E associated to the power series f ∈ C[[z]]. It is functorial in that if
φ : N →M is a smooth map of manifolds, then f

(
φ∗(E)

)
= φ∗f(E) ∈ H∗(N ;C).
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Remark. The characteristic classes as we have defined them here can be shown to be equivalent
(modulo torsion) to characteristic classes defined in algebraic topology, as cohomology classes
in H∗(BG;Z) where BG is the classifying space for the structure group of E. In fact it can
be shown that the basic characteristic class [trK] ∈ H2(M ; 2πiZ), i.e., is 2πi times an integral
class (which is the first Chern class of E in this example). For this reason it is common to
follow the convention of replacing K by K/2πi in the definitions above in order to recover the
integral characteristic classes of algebraic topology (again, modulo torsion).

Example 3.50.

(a) The Chern character is the characteristic class

Ch(E) = tr exp(−K/2πi) ∈ H2∗(M ;C)

associated to the power series f(z) = e−z. It has the additivity and multiplicativity
properties16

Ch(E ⊕ F ) = Ch(E) + Ch(F ), Ch(E ⊗ F ) = Ch(E)Ch(F )

hence the term “character”17. If E0 ⊕ E1 is a Z2-graded bundle, then we can use a
connection preserving the subbundles E±, and in light of additivity, replacing the trace
by the supertrace gives

ChZ2(E) = str exp(K/2πi) = Ch(E0)− Ch(E1)

(b) The A-hat class of a real vector bundle E →M is the class

Â(E) = det1/2 K/4πi

sinhK/4πi
= exp tr

1

2
log

K/4πi

sinhK/4πi
∈ H4∗(M ;C).

(We write the second formula to indicate how it may be associated to the trace of the

power series f(z) = log
√
z/2

sinh
√
z/2

.) The reason the total class only contains terms of

degrees which are multiples of 4 is that f(z) is even, hence has an expansion in z2. The
A-hat class is multiplicative:

Â(E ⊕ F ) = Â(E)Â(F ).

(c) The Hirzebruch L-class of a real vector bundle E →M is the class

L(E) = det1/2 K/2πi

tanhK/2πi
∈ H4∗(M ;C)

The L-class is also multiplicative:

L(E ⊕ F ) = L(E)L(F ).
16The second of these follows easily from the definition and the fundamental property of exponentials. Proving

the first involves more theory than we shall develop here.
17In fact it defines a ring homomorphism from topological K-theory to cohomology, which was shown by

Atiyah and Hirzebruch to be an isomorphism modulo torsion.
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(d) The Euler class of an oriented real bundle E →M is

χ(E) = Pf(−K/2πi) = det1/2(−K/2πi) ∈ H2∗(M ;C).

Here we use the fact that E is oriented to choose a square root of the determinant known

as the Pfaffian; if A =

(
0 −a
a 0

)
is in so(2), then Pf(A) = a. Note that the sign of

Pf(E) depends on the choice of orientation for E.

In the case that E = TM , we denote these classes simply by Â(M), L(M), etc. The multi-
plicative classes are associated to so-called genera. For example, the A-hat genus of M is
the (rational) number

Â(M) =
〈
Â(M), [M ]

〉
=

∫
M
Â(M) ∈ Q,

and the L-genus of M is

L(M) = 〈L(M), [M ]〉 =

∫
M
L(M) ∈ Q.

Remark. The genera are important in algebraic because they are cobordism invariant, and
from the multiplicativity properties they define homomorphisms from cobordism rings to Q.

As a corollary, we obtain the cohomological form of the index theorem:

Theorem 3.51 (Atiyah-Singer). Let M be a manifold of dimension 2n, and D ∈ Diff1(M ;E)
a Dirac operator associated to the graded Clifford module E = E0 ⊕ E1. Then

ind(D0) =

∫
M
Â(M)ChZ2(E/S).

Proof. The formula follows immediately from the definitions above, where we have absorbed
the constant (2πi)−n into the degree 2n portion of the characteristic class (which is the only
portion contributing to the integral) to compensate for the replacement of curvature forms R
and KE/S by R/2πi and KE/S/2πi, respectively.

3.4.3 Applications

The most direct application of the index formula is to the case of the spin Dirac operator
ð ∈ Diff1(M ; S) on a spin manifold M . In this case there is no twisting, so we obtain

Theorem 3.52. The index of ð is the A-hat genus

ind(ð+) = Â(M).

In particular, the A-hat genus of a spin manifold must be an integer.
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Applying Theorem 3.51 to other Dirac operators involves computing the Chern character
of the twisting curvature. Since we are out of time, we will not go into details, but let us
mention some of the highlights.

Let D = (d+ d∗) ∈ Diff1(M ; ΛM), with the grading ΛM = ΛevenM ⊕ ΛoddM . Then

ind(D0) =

2n∑
i=0

(−1)i dimH i(M ;R) = Eul(M)

is the Euler characteristic of M . On the other hand, it can be shown that ChZ2

(
(ΛevenM ⊕

ΛoddM)/S
)

= in/2χ(TM)Â(TM)−1. From this we conclude.

Theorem 3.53 (Chern-Gauss-Bonet). Let M be a manifold of dimension 2n. Then

Eul(M) = ind(D0) =

∫
M

Pf(−R/2π).

In particular, if dim(M) = 2, then

Eul(M) =
1

2π

∫
M
κ.

There is another grading on ΛM which follows from the identification ΛM ∼= C`(M) =
C`+(M)⊕ C`−(M), where we split into ±1 eigenspaces of the Clifford volume element ω2n =
ine1 · · · e2n. On ΛM this is equivalent to the splitting into ±1 eigenspaces of the Hodge star
operator. There is a natural pairing

Hj(M ;R)×H2n−j(M ;R)→ R,

([α], [β]) 7→ 〈[α] ∧ [β], [M ]〉 =

∫
M
α ∧ β =

∫
M
〈α, ?β〉dVol

Which in particular gives a quadratic form on Hn(M ;R). If n is even (i.e., dim(M) is a
multiple of 4), then this quadratic form is symmetric and we define the signature of M
to be the signature of this quadratic form, denoted by σ(M). It is not difficult to show
that ind

(
(d + d∗)+

)
= σ(M) in this case, and computing the relative Chern character gives

ChZ2

(
(Λ+M ⊕ Λ−M)/S

)
= L(M)Â(M)−1.

Theorem 3.54 (Hirzebruch). Let M have dimension m = 4n. Then the signature of M
coincides with the L-genus:

σ(M) = ind
(
(d+ d∗)+

)
=

∫
M
L(M) = L(M).
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