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A(x) is an su(2) connection
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Monopoles are solutions of
D¢ = xF

|| = v>0asr— oo.

Charge k € N = number zeros of ¢.
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Bag conjecture. Cherry bags vs strawberry bags.
Points in “middle” of moduli space.
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Monopole chains
Cherkis & Kapustin 01, Maldonado & Ward '13—14, Foscolo ’16
Coordinates on R? x S': ¢ = x' +ix?, y = x3.
x ~ x + B for some g > 0.
Boundary condition:

k
A~i<b+5arg§> <(1) _01>dx

K
<D~i<v+ﬁln|(|> G) _01>

v, b parameters, b = v + ib.
k = number of zeros of ¢.
Why R? x S'?
» Natural for Nahm transforms (R*/A < (R*)*/A\*)

» Interesting (ALG) hyperkahler metrics on moduli spaces
» Natural symmetry groups. ..



Cyclic symmetry

Z%’) generated by

(¢ x) = (2™/M¢,x + nB/m).

2p

ngO) fo)
Do there exist monopole chains with symmetry groups Zf,’,"')?
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Correspondences for monopole chains

Spectral curves S C CP! x CP),
+ parabolic line bundles

Monopole chains on Hitchin equations on
R2><81DC]P’2\{OO} R x 8" =CP},\ {0,00}
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Interlude on parabolic bundles

Parabolic structures at points p encode holonomy/metric
singularities

Example (Parabolic structure at 0 € C)

In a unitary gauge, consider connection

A = idiag(c;)dd
dz dz

1 .
= 2d|ag(oz,-)(z—2>, O<ar<ap<...<ap<l.

Holonomy about 0 is diag(exp(—2wia;)).

Gauge transformation g = diag(|z|*) brings us to a
holomorphic gauge, where A = diag(a;)dz/z. Hermitian metric
is now

h = diag(|z|?).

(The singular metric a flag structure on the fibre at p).
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Monopole chain — spectral data

» Restriction £ of E to slice C = R?> ¢ R? x S' has
holomorphic structure and parabolic structure at co.

» The holonomy V/(() of A — i¢ about the circle is a
holomorphic invertible section of End(&).

» The spectral curve S C CIP} x CP}, of a monopole chain is
S:det(V(¢{) —w)=0.

» Bogomolny equation + boundary conditions =
S:w—e”P()+1/w=0

for some monic degree k polynomial P.
» Line bundle L — S\ {p_ = (c0,0), p+ = (00, 00)}:
L:.w = eigenspace of V(¢) with eigenvalue w.
» L inherits parabolic structure with weights a at p...
» (S,L,a_,ay) are well-defined up to
(Lo, 07) ~ (Lo[mpr+m p |,at—mT,a=—m~), m* € Z
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Hitchin’s equations on R x S;_ 5

$ a gl(k,C)-valued function; A a u(k) gauge field.
Theorem (Cherkis-Kapustin ’01)

There is a bijection between charge k monopole chains and
solutions of Hitchin’s equations,

Md=0 (HE1)

F-116.8=0, (HE2)
satisfying the following b.c.s in local unitary gauges as r — +occ.
b ~ exp(B(xs — v)/k)diag(1, e®™/k, ... ek=1mi/ky (HBC1)
F2=0(r"®) (HBC2)

Solutions of (HE1), (HBC1) are called
twisted parabolic Higgs bundles. . ..
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Hitchin equation — Higgs bundles

Over CP}, we have:

» A holomorphic rank k v.b. £ — CP},
» Parabolic structures at w = 0,

» A holomorphic section ¢ of End £ with simple poles at
w = 0, 0o, whose residues are compatible with the
parabolic structures.

If ¢ was a section of Q"% ® End(€) this would be a parabolic
Higgs bundle. Instead, it is a twisted parabolic Higgs bundle.

A correspondence between solutions of Hitchin’s egs and
Higgs bundles is called a Hitchin-Kobayashi correspondence.
Hitchin-Kobayashi correspondences established for both
twisted and parabolic Higgs bundles, but not (yet) for twisted
parabolic Higgs bundles.
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» Spectral curve § ¢ CP' x CP'
S det(d(w) —¢) = 0.
» Line bundle L — 8\ {p_,p,}:
Lcw = ¢ — eigenspace of ¢(w).
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Spectral data almost the same: S~s 1

12

L.
However, a4+ # a4 because
Proposition (H)
pardegl :=deglL+ a; +a_ = —k
pardegl := degl + &, +é&_ = —k +1.
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Symmetric spectral data

Largest possible cyclic symmetry group is Zo:
S:w-e"¢K+1/w=0
is invariant under (¢, w) — (e™/k¢, —w).
Action of ng):
(L,at,a”) = (L,a™ —m/2,a” + m/2).

Theorem (H)

Foreach!=0,1,...,k — 1 there exist unique spectral data for
a k-monopole with symmetry group Zg(’ ),
There are no spectral data invariant under Z(ZI ),

Proof.
Use Abel-Jacobi map: {L} = R2(k=1) /A, O

Assuming HK correspondence, this proves existence of
monopole chains with cyclic symmetry.
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0 w O
Eg. k=3:¢=[10 0 s
vy 0O
Zgo):
vy =efsyefs Res
Vo = 1 1

) . Ulolg = 6*534—653.



Symmetric Higgs bundle

0 w O
Egk:3¢: 0 0 .y1y2y3:e*53+ef33.
vy 0O
Zgo):
vy = e PS4 efs Res | |
vp = 1 1 1 1 1 1 1
L 3r 1 57w Im 1 971 N
23 23 ' 28 28 | 28 B
Zéz): periodic up to gauge transformation.
q 2672734’6?72 ) Res \ \
w=es+e s | 1 2| 1.2
s 3r 1 57w Im 1 971 N
28 28 ' 28 2B | 2B 23




Symmetric Higgs bundle

0 w O
Egk:3¢: 0 0 .y1y2y3:e*53+ef33.
vy 0O
Zgo):
n=ehseis RES ‘ ‘
e 1 1 11 1 11 1
s 3r 1 5w Im 1+ 9m N
23 23 ' 28 28 | 28 B
Zéz): periodic up to gauge transformation.
y1:e;+e:352 Res | |
V=€ 3 +e 3 1 2 1 1 i g
s 3r 1 5w Im 1 91 M
25 25 28 28 ' 28 23

h = diag(e¥) with Ay; = |v;]2e¥i=Viet — |y_y|2e¥i-1—¥i,
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Zg), B/2m=3.0

k =4,
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z, p/er=12

k=4,
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Summary

v

Spectral data for monopole chain has a parabolic structure.

v

3 spectral data with cyclic symmetry Zg(’ ),

v

= 3 cyclic monopole chains assuming Kobayashi-Hitchin
correspondence.

Larger symmetry groups ruled out.

Ongoing: instanton chains (calorons) with cyclic symmetry
(Josh Cork).

v

v
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